Что такое транзистор – разновидности полупроводниковых приборов и способы проверки. Принцип работы биполярного транзистора

03.08.2019 Социальные сети

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже.

Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Как устроен биполярный транзистор?

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

Как видим, он содержит три слоя: два с проводимостью n-типа и один - p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.

Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (U BE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то U BE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение U BE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения I C), другой амперметр между базой (B) и потенциометром (для измерения I B), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, U BE равно 0 В, также как и токи I C и I B . Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: U BE = 0.6 В, I B = 0,8 мА и I C = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор - эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток I BE . Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs - Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу - либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» - аналогами эмиттера и коллектора или, точнее,катода и анода вакуумного триода. Третий вывод - затвор (аналог сетки триода) - присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично . При приложении к его полюсам разности потенциалов происходит его "смещение". Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается. Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную .

Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема , в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки , активный режим и режим насыщения .

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток. Для кремниевых транзисторов величина такого порога равна примерно 0,6 В. Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

U БЭ <0,6 В

I Б =0

Активный режим

В активном режиме эмиттерный переход смещается в прямом направлении до момента отпирания (начала протекания тока) напряжением больше 0,6 В (для кремниевых транзисторов), а коллекторный – в обратном. Если база обладает проводимостью p-типа, происходит перенос (инжекция) электронов из эмиттера в базу, которые моментально распределяются в тонком слое базы и почти все достигают границы коллектора. Насыщение базы электронами приводит к значительному уменьшению размеров коллекторного перехода, через который электроны под действием отрицательного потенциала со стороны эмиттера и базы вытесняются в область коллектора, стекая через вывод коллектора, обуславливая тем самым ток коллектора. Очень тонкий слой базы ограничивает её максимальный ток, проходящий через очень малое сечение поперечного разреза в направлении вывода базы. Но эта малая толщина базы обуславливает её быстрое насыщение электронами. Площадь переходов имеет значительные размеры, что создаёт условия для протекания значительного тока эмиттер-коллектор, в десятки и сотни раз превышающий ток базы. Таким образом, пропуская через базу незначительные токи, мы можем создавать условия для прохождения через коллектор токов гораздо большей величины. Чем больше ток базы, тем больше её насыщение, и тем больше ток коллектора. Такой режим позволяет плавно управлять (регулировать) проводимостью коллекторного перехода соответствующим изменением (регулированием) тока базы. Это свойство активного режима транзистора используется в схемах различных усилителей.

В активном режиме ток эмиттера транзистора складывается из тока базы и коллектора:

I Э = I К + I Б

Ток коллектора можно выразить соотношением:

I К = α I Э

где α – коэффициент передачи тока эмиттера

Из приведённых равенств можно получить следующее:

где β – коэффициент усиления тока базы.

Режим насыщения

Предел увеличения тока базы до момента, когда ток коллектора остаётся неизменным определяет точку максимального насыщения базы электронами. Дальнейшее увеличение тока базы не будет изменять степень её насыщения, и ни как не будет влиять на ток коллектора, может привести к перегреву материала в области контакта базы и выходу транзистора из строя. В справочных данных на транзисторы могут быть указаны величины тока насыщения и максимально допустимого тока базы, либо напряжения насыщения эмиттер-база и максимально допустимого напряжения эмиттер-база. Эти пределы определяют режим насыщения транзистора при нормальных условиях его работы.

Режим отсечки и режим насыщения эффективны при работе транзисторов в качестве электронных ключей для коммутации сигнальных и силовых цепей.

Отличие в принципе работы транзисторов с различными структурами

Выше был рассмотрен случай работы транзистора n-p-n структуры. Транзисторы p-n-p структуры работают аналогично, но есть принципиальные отличия, которые следует знать. Полупроводниковый материал с акцепторной проводимостью p-типа обладает сравнительно низкой пропускной способностью электронов, так как основан на принципе перехода электрона от одного вакантного места (дырки) к другому. Когда все вакансии замещены электронами, то их движение возможно только по мере появления вакансий со стороны направления движения. При значительной протяжённости участка такого материала он будет обладать значительным электрическим сопротивлением, что приводит к большим проблемам при его использовании в качестве наиболее массивных коллекторе и эмиттере биполярных транзисторов p-n-p типа, чем при использовании в очень тонком слое базы транзисторов n-p-n типа. Полупроводниковый материал с донорной проводимостью n-типа обладает электрическими свойствами проводящих металлов, что делает его более выгодным для использования в качестве эмиттера и коллектора, как в транзисторах n-p-n типа.

Эта отличительная особенность различных структур биполярных транзисторов приводит к большим затруднениям при производстве пар компонент с различными структурами и аналогичными друг другу электрическими характеристиками. Если обратить внимание на справочные данные характеристик пар транзисторов, можно заметить, что при достижении одинаковых характеристик двух транзисторов различных типов, например КТ315А и КТ361А, несмотря на их одинаковую мощность коллектора (150 мВт) и примерно одинаковый коэффициент усиления по току (20-90), у них отличаются максимально допустимые токи коллектора, напряжения эмиттер-база и пр.

P.S. Данное описание принципа действия транзистора было интерпретировано с позиции Русской Теории , поэтому здесь нет описания действия электрических полей на вымышленные положительные и отрицательные заряды. Русская Физика даёт возможность пользоваться более простыми, понятными механическими моделями, наиболее приближенными к действительности, чем абстракции в виде электрических и магнитных полей, положительных и электрических зарядов, которые вероломно подсовывает нам традиционная школа. По этой причине не рекомендую без предварительного анализа и осмысления пользоваться изложенной теорией при подготовке к сдаче контрольных, курсовых и иных видов работ, Ваши преподаватели могут просто не принять инакомыслие, даже конкурентоспособное и вполне состоятельное с точки зрения здравого смысла и логики. Кроме того, с моей стороны это первая попытка описания работы полупроводникового прибора с позиции Русской Физики, может уточняться и дополняться в дальнейшем.

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда, что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно , определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) – план по типу ОК;
  • с совместным затвором (ОЗ) – похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

Что означает название "транзистор"

Транзистор не сразу получил такое привычное название. Первоначально, по аналогии с ламповой техникой его называли полупроводниковым триодом . Современное название состоит из двух слов. Первое слово - «трансфер», (тут сразу вспоминается «трансформатор») означает передатчик, преобразователь, переносчик. А вторая половина слова напоминает слово «резистор», - деталь электрических схем, основное свойство которой электрическое сопротивление.

Именно это сопротивление встречается в законе Ома и многих других формулах электротехники. Поэтому слово «транзистор» можно растолковать, как преобразователь сопротивления. Примерно так же, как в гидравлике изменение потока жидкости регулируется задвижкой. У транзистора такая «задвижка» изменяет количество электрических зарядов, создающих электрический ток. Это изменение есть не что иное, как изменение внутреннего сопротивления полупроводникового прибора.

Усиление электрических сигналов

Наиболее распространенной операцией, которую выполняют транзисторы , является усиление электрических сигналов . Но это не совсем верное выражение, ведь слабый сигнал с микрофона таковым и остается.

Усиление также требуется в радиоприеме и телевидении: слабый сигнал с антенны мощностью в миллиардные доли ватта необходимо усилить до такой степени, чтобы получить звук или изображение на экране. А это уже мощности в несколько десятков, а в некоторых случаях и сотен ватт. Поэтому процесс усиления сводится к тому, чтобы с помощью дополнительных источников энергии, полученной от блока питания, получить мощную копию слабого входного сигнала. Другими словами маломощное входное воздействие управляет мощными потоками энергии.

Усиление в других областях техники и природе

Такие примеры можно найти не только в электрических схемах. Например, при нажатии педали газа увеличивается скорость автомобиля. При этом на педаль газа нажимать приходится не очень сильно - по сравнению с мощностью двигателя мощность нажатия на педаль ничтожна. Для уменьшения скорости педаль придется несколько отпустить, ослабить входное воздействие. В этой ситуации мощным источником энергии является бензин.

Такое же воздействие можно наблюдать и в гидравлике: на открытие электромагнитного клапана, например в станке, энергии, идет совсем немного. А давление масла на поршень механизма способно создать усилие в несколько тонн. Это усилие можно регулировать, если в маслопроводе предусмотреть регулируемую задвижку, как в обычном кухонном кране. Чуть прикрыл - давление упало, усилие снизилось. Если открыл побольше, то и нажим усилился.

На поворот задвижки тоже не требуется прилагать особых усилий. В данном случае внешним источником энергии является насосная станция станка. И подобных воздействий в природе и технике можно заметить великое множество. Но все-таки нас больше интересует транзистор, поэтому далее придется рассмотреть…

Усилители электрических сигналов