Акселерометр — что это такое и зачем нужен.

14.08.2019 Роутеры и модемы

Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.

История и архитектура

Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет - в 1974 году - компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.

MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.

MEMS-сенсор

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.

В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен - он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.

Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung - литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы.

Результат, полученный с помощью объемной обработки

Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).

DLP-проектор BenQ использует актуаторы

Ну а теперь мы поговорим о каждом устройстве в отдельности.

Акселерометры

Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх - они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.

Nokia 5500 - первый телефон с акселерометром

Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.

Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее, в их жестких дисках. Всем известно, что винчестеры - устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.

Акселерометр InvenSense MPU-6500

По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.

В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control - и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.

Краш-тест автомобиля Opel Vectra. В 90-е годы подушки безопасности зачастую были только опцией

Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д’Аллесандро (Antonino D"Alessandro) и Джузеппе Д’Анна (Giuseppe D"Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.

Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и искомое ускорение.

Акселерометр, основанный на конденсаторном принципе. На фото изображены обкладки конденсатора (capacitor plates), неподвижная часть (proof mass), пружина (spring)

Самым распространенным типом акселерометров являются пьезоэлектрические системы. Так же как и в конденсаторных акселерометрах, в их основе лежит грузик, который давлением воздействует на пьезокристалл. Под давлением он вырабатывает электрический ток, что позволяет рассчитать искомое ускорение, зная параметры всей системы.

Существует и еще один тип акселерометров, который в корне отличается от конденсаторного и пьезоэлектрического. Такие акселерометры называются термальными. Их архитектура предусматривает использование пузырька воздуха. При ускорении пузырек отклоняется от своего начального положения, и это фиксируется датчиками. Зная, на сколько сместился пузырек при движении, можно рассчитать величину ускорения.

Гироскопы

Еще одним интересным датчиком, часто используемым вместе с акселерометром, является гироскоп. Его основное предназначение заключается в измерении угловых скоростей относительно одной или нескольких осей. Собственно, комбинация акселерометра и гироскопа позволяет отследить и зафиксировать движение в трехмерном пространстве.

Первым из мобильных устройств, обладающих гироскопом, стал Apple iPhone 4, после чего наличие этой МЭМС стало чуть ли не обязательным требованиям для любого смартфона. Функциональность гироскопа пользователи смогли оценивать во многих мобильных играх, где вместо одного из двух виртуальных джойстиков появилась кнопка выстрела. Ну а целиться уже приходилось путем позиционирования смартфона в пространстве, что стало возможно как раз благодаря наличию гироскопа.

Гироскоп, используемый в Apple iPhone 4

Кроме мобильных устройств, гироскопы присутствуют в контроллерах для игровых приставок PlayStation, Xbox и Wii, где они функционируют вместе с акселерометрами. Также эти системы используются в камерах в целях оптической стабилизации для получения качественных снимков.

Архитектура гироскопов во многом схожа с таковой у акселерометров. Многие из этих устройств имеют конденсаторную структуру. Такой дизайн, например, использует в своих продуктах компания STMicroelectronics. В основе их гироскопа лежит механический элемент, работающий по принципу камертона и использующий эффект Кориолиса для преобразования угловой скорости в перемещение чувствительной структуры. Немного поясним этот процесс.

Две подвижные массы находятся в постоянном движении, причем в противоположных направлениях, которые обозначены на рисунке синим цветом. При изменении угловой скорости начинает действовать сила Кориолиса, обозначенная желтым цветом. При этом направление силы Кориолиса перпендикулярно направлению движения масс. Сила Кориолиса вызывает смещение масс, пропорциональное величине угловой скорости. Поскольку система имеет конденсаторную структуру, то любое смещение вызывает изменение электрической емкости. И таким образом угловая скорость преобразуется в электрический параметр. Тут же стоит отметить, что благодаря использованию специальных камертонов гироскопы STMicroelectronics нечувствительны к случайной вибрации. При таком нежелательном воздействии на подвижные массы они обе будут смещаться в одном направлении, тем самым не изменяя емкости конденсатора.

Так выглядит чип гироскопа производства STMicroelectronics

Магнитометры и барометры

Еще одной интересной микроэлектромеханической системой является магнитометр. Он, как и обычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли. Полученная же информация используется в основном в картографических и навигационных приложениях.

В дополнение к магнитометру часто используется МЭМС-барометр. Впервые барометр появился в устройстве Samsung Galaxy Nexus, вышедшем в 2011 году. Опять же, его функциональность ничем не отличается от традиционного - он измеряет атмосферное давление в текущем местоположении устройства. При этом барометр уменьшает время подключения к системе GPS. Сама же суть работы сенсора заключается в сравнении внешнего атмосферного давления по отношению к вакуумной камере внутри самого датчика. Это позволяет определять местоположение пользователя с точностью до 50 см по высоте и значительно расширяет возможности навигации пользователя, поскольку также позволяет определить местоположение по вертикали. К примеру, мобильный телефон с барометром поможет определить ваш маршрут на любом этаже торгового центра, с чем не справляется система GPS, указывая лишь местоположение на плоскости.

Акселерометр — это прибор, позволяющий измерять ускорение тела под действием внешних сил. Схематически, этот прибор можно изобразить в виде массивного тела, которое способно передвигаться вдоль некоторой оси и соединено с корпусом пружинами. Смещение тела относительно центра оси можно измерить с помощью механической стрелки, как показано на рисунке.

В состоянии покоя тело находится на равном удалении от стенок прибора и стрелка указывает на середину шкалы. Если весь прибор толкнуть вправо (кадр B), то груз сместится по оси влево до момента, когда сила растянутой пружины уравновесит внешнюю силу. В этот момент, стрелка повернется и укажет на некоторое значение на шкале. Чем больше внешняя сила, тем дальше смещается груз, тем большее значение показывает стрелка. Когда сила перестанет действовать на тело, груз вернется на прежнее положение и прибор покажет на нулевое значение шкалы.

1. Электронный МЭМС-акселерометр

Разумеется, внешний вид современного акселерометра отличается от этой простой модели с пружинками, но не сильно. Как и прежде, для измерения ускорения нам требуется какое-то массивное тело, которое будет скользить по направляющей и удерживаться в нейтральном положении пружинками. При этом, всё это должно быть очень миниатюрным, чтобы поместиться в тот же смартфон.

На помощь приходит технология МЭМС (микроэлектромеханические системы). С помощью МЭМС удаётся выращивать механический акселерометр на кремниевой подложке таким же методом, которым создаются и обычные микросхемы.

Так выглядит МЭМС акселерометр на снимке, полученном при помощи микроскопа. Схема работы такого прибора представлена ниже.

Чтобы измерить смещение массивного тела вдоль оси прибора здесь применяется дифференциальный конденсатор. В состоянии покоя, расстояния между центральным электродом и двумя обкладками конденсатора (выделены оранжевым цветом) равны. При воздействии силы эти расстояния меняются, что в дальнейшем фиксируется специальной аналоговой измерительной системой.

Современные акселерометры имеют в своем составе сразу три измерительные оси, направленные перпендикулярно друг к другу. Это позволяет измерять ускорение тела в любом направлении.

2. Измерение углов наклона с помощью акселерометра

Все современные смартфоны умеют определять угол своего наклона относительно горизонта. Эта функция используется для автоматического поворота экрана, а также в различных играх, где управление происходит при помощи наклона. И всё это благодаря акселерометру. Но как устройство, определяющее ускорение, может помочь вычислить угол наклона?

Дело в том, что на акселерометр, как и на все тела на этой планете, действует сила гравитации. Эта сила придаёт телам ускорение когда они падают на землю. Повернем акселерометр так, чтобы его ось оказалась в вертикальном положении. В таких условиях груз сместится вниз, растянув при этом верхнюю пружину и сжав нижнюю. В этот момент акселерометр зафиксирует величину ускорения свободного падения — 9.8 м/с².

Попробуем использовать этот факт для вычисления угла наклона акселерометра относительно горизонта. Изобразим на схеме тело, на котором закреплен трёхосевой акселерометр. Обозначим эти три оси как: Xт, Yт и Zт.

Затем повернём тело на угол a вокруг оси относительно системы координат мира X, Y и Z. Предполагается, что ось мира Z направлена вдоль вектора силы гравитации (вверх), а оси X и Y вдоль горизонта. Мы смотрим на всю эту систему сбоку, так что оси мира — X и тела — Xт смотрят на нас, и мы их не видим.

В таком положении акселерометр, находящийся внутри тела зафиксирует проекции силы гравитации на все три оси: Gxт,Gyт,Gzт. При этом проекция Gxт на ось Xт будет равна нулю, так как эта ось расположена вдоль горизонта. Проекции Gyт (зеленый отрезок) и Gzт можно выразить с помощью теоремы о прямоугольном треугольнике:

Gyт = G * cos(b) Gzт = G * sin(b)

Таким образом, зная G и одну из проекций Gyт или Gzт можно вычислить угол b отклонения акселерометра от вектора гравитации Z (от вертикальной оси):

Cos(b) = Gyт/G b = arccos(Gyт/G)

Делая такие вычисления, важно учитывать, что G и Gyт должны измеряться в одинаковых единицах. Например, если мы преобразуем показания акселерометра к единицам гравитации (другими словами G = 1 — земная гравитация), то выражение для угла b примет вид:

B = arccos(Gyт/1) = arccos(Gyт)

И напоследок, вычислим искомый угол a наклона тела относительно горизонта:

A = 90 - b = 90 - arccos(Gyт)

Помним, что Gyт — это число, которое возвращает нам акселерометр.

Заключение

Итак, мы выяснили, что одного лишь акселерометра вполне достаточно, чтобы вычислить угол наклона тела относительно горизонта. В следующем уроке мы рассмотрим конкретный пример работы с датчиком MPU6050 на Ардуино.

Однако, следует учитывать, что вычисление углов с помощью акселерометра возможно только тогда, когда прибор находится в состоянии покоя. Ведь если на прибор во время измерения подействует любая другая сила, акселерометр непременно её зафиксирует и тем самым внесет ошибку в расчеты.

Практичное устройство – акселерометр, позволяет измерять и регулировать скорость передвижения транспортных средств. Впервые такие приборы появились в комплектации автомобилей Форд и Мерседес-Бенц. Чуть позже их стали устанавливать в мобильные телефоны и другие технические устройства.

Акселерометр в смартфоне

Акселерометр, что это такое в телефоне и по какому принципу он работает?

Первоначальные акселерометры имели крупные размеры, не позволяющие внедрить устройство в миниатюрный корпус мобильника.

Специалисты решили создать миниатюрный чип с инертной массой внутри, которая и отслеживает ускорение с фиксацией данных об изменениях местоположения объекта.

Общий алгоритм работы мобильного акселерометра не отличается от основного принципа работы оригинального устройства.

Современные гаджеты также укомплектовываются этим небольшим, но очень удобным механизмом. Акселерометр в смартфоне или в планшете позволяет сохранять важные данные, измеряет уровень смещения от уровня состояния покоя, отслеживает активность человека, а также распознает и демонстрирует расположение в пространстве.

Другие важные функции акселерометра в мобильном телефоне:

  • измерение количества шагов (шагометр);
  • обеспечивает удобное управление путем мгновенного реагирования на смену положения устройства;
  • переворачивает экран при смене положения, создавая наиболее комфортные условия для эксплуатации гаджета.

К слову, большинство современных смартфонов также укомплектовываются гироскопом.

Гироскоп в телефоне обеспечивает гаджет функцией изменения ориентации устройства с книжной на альбомную в зависимости от его расположения. Первый гироскопический датчик в мобильной индустрии был установлен в Айфон 4.

Новые возможности телефона покорили пользователей и эту идею вскоре подхватили и другие компании-производители. Во многих современных смартфонах уже функционирует акселерометр и гироскоп, улучшающие функциональность гаджета.

Функция акселерометра в фитнес-часах

В часах и в фитнес-браслетах акселерометр выполняет функцию контроля:

  • измеряет количество шагов;
  • просчитывает скорость движения и пройденное расстояние;
  • устанавливает какое количество энергии потратил человек во время тренировки;
  • распознает сердечный ритм.

Вся информация автоматически фиксируется во время сна и бодрствования человека. Такие данные сохраняются в отчете установленного приложения. Очень удобное устройство для тех, кто занимается спортом и следит за своим здоровьем!

Функция акселерометра в видеорегистраторе

Автомобильные видеорегистраторы уже давно комплектуются чипом-акселерометром. Это устройство фиксирует резкие изменения движения транспорта и обеспечивает сохранность видео файлов с регистратора.

Акселерометр в видеорегистраторе также выполняет:

  • сбор информации об ускорении авто и ее сохранение в компьютере;
  • при определении «тревожных событий» (например, резкое торможение, удар или поворот), запускает автоматическое включение регистратора, который мог быть выключен на тот момент;
  • предотвращают случайное удаление видео записей в момент «тревожных событий», сохраняя эту информацию в специальной отдельной папке.

Проще говоря, акселерометр – очень нужная и удобная вещь, успешно применяемая в разных направлениях.

Благодаря развитию технического прогресса у людей появилась возможность использовать достаточно большой набор инструментов, при этом нося с собой только один смартфон. Однако есть маленькая деталь, без которой использование данного устройства было бы не так удобно - акселерометр. Что это такое и почему он так важен?

Основной функцией данного прибора является измерение ускорения наземного транспорта, летательных аппаратов, ракет и другой техники. Впервые он появился в конце XIX века. Устройство устанавливали на поезда и автомобили, чтобы иметь возможность отслеживать скорость, с которой они передвигаются.

Шкала отображала все возможные и максимально допустимые значения для конкретного вида транспорта. Такое строение позволяло предотвратить превышение скоростного режима и не допустить разрушения двигателя. Но был у этого помощника и один недостаток. Что это? Акселерометр был крайне громоздким. Так что впоследствии конструкция все время изменялась.

В Россию первые такие устройства попали уже в комплекте автомобилей Ford и Mercedes-Benz. Также они шли вместе с паровозами, произведенными в Германии. Была лишь одна проблема. Она заключалась в том, что эти акселерометры не выдерживали холодный климат. А потому предприятиям транспортного машиностроения России пришлось разрабатывать собственные модели.

Разновидности

Различают следующие разновидности акселерометров:

  • Емкостный. Отслеживает изменение емкости между статическим состоянием и динамическим.
  • Пьезоэлектрический. Устройство работает за счет одноименного эффекта (в зависимости от давления на кристаллы, появляется электрический потенциал).
  • Пьезорезистивный. Измеряет электрическое сопротивление в зависимости от приложенного механического давления.
  • Устройство с эффектом Холла. Замеряет изменения в напряжении, происходящие по причине перемен в магнитном поле вокруг самого прибора.
  • Магнитно-резисторный. Фиксирует изменения в магнитном поле. В отличие от предыдущего измеряет сопротивление.
  • Прибор теплопередачи. В зависимости от ускорения измеряет перемены в теплоотдаче.

Новое время

На фотографии сверху можно увидеть мобильное приложение, имитирующее акселерометр.

Современное строение акселерометров позволяет связывать их с бортовым компьютером в автомобилях, поездах, самолетах и ракетах. Таким образом, получается абсолютная целостная система. Ее основной задачей является анализ измерения показателя ускорения. Впоследствии компьютером дается соответствующая команда о корректировке работы, при этом увеличивается или уменьшается скорость движения.

На данный момент использование датчика акселерометра вышло за пределы транспортной индустрии. Данное устройство также стало устанавливаться и в мобильные телефоны, но при этом в немного другой форме. Именно о современной вариации уменьшенного прибора и пойдет речь далее.

Мобильная индустрия

Выше уже было сказано о том, что акселерометр - это устройство, позволяющее измерять и регулировать изменение скорости передвижения транспорта. Тем не менее сегодня его можно встретить и в сотовых телефонах.

Первое устройство

Первым мобильным устройством, получившим акселерометр, стал Nokia 5500. В столь маленьком корпусе не было возможности использовать устройство в его оригинальной форме. В силу этого было решено использовать миниатюрный чип. Внутри него находилась инертная масса. Возникает резонный вопрос: какую функцию выполнял первый акселерометр в телефоне. Что это было? То же, что крайне популярно сейчас в различных фитнес-браслетах и прочих устройствах - шагомер.

Как это работает

Общий алгоритм работы не слишком отличается от изначального прибора. Чип встраивался по принципу неподвижной конструкции с прикрепленными проводниками. Находящаяся внутри инертная масса, подвергаясь ускорению, изменяет свое местонахождение в пространстве. Благодаря этому сдвигу устройство получает данные обо всех изменениях местоположения. Отходящие от устройства проводники находились между контактами, снимающими показания счетчика.

По причине крайне малого размера всех деталей чипа производство деталей производится без вмешательства человека — только автоматизированные конвейеры.

Стоит отметить, что акселерометр в смартфоне - это деталь, позволяющая сохранять важные данные. К примеру, при нахождении устройства в полете (падение или перекидывание) прибор определяет это состояние и отдает команду о блокировке самых хрупких деталей, отвечающих за запись данных. Например, так происходит с записывающей головкой жесткого диска ноутбука.

Однако в современных гаджетах можно встретить не только акселерометр, но и гироскоп.

Что такое гироскоп?

На фото выше можно увидеть роторный гироскоп. Это устройство, реагирующее на изменение угла наклона относительно поверхности Земли. Самый простой пример — юла. Оно было изобретено в 1817 году. Его преимуществом стала возможность работы в достаточно плохих условиях, таких как:

  • низкий уровень видимости;
  • наличие электромагнитных помех;
  • тряска поверхности и многие другие.

Разновидности

На данный момент различают две основных категории данных устройств.

По степени свободы:

  • двухстепенной;
  • трехстепенной.

По принципу действия:

  • оптический;
  • механический.

Первое появление в мобильной индустрии

Самым первым представителем этой сферы, получившим гироскопический датчик, стал смартфон от компании Apple - iPhone 4. Эта функция позволила изменять ориентацию телефона с книжной на альбомную, в зависимости от его положения в пространстве.

Подобное нововведение было крайне популярно среди покупателей, а потому другие фирмы-производители мобильных устройств достаточно быстро подхватили идею, начав установку данного элемента в собственные телефоны. Стоит отметить, что все последующие модели iPhone на обязательной основе включали в себя эту функцию.

Однако устройства на платформе Android не всегда обладают гироскопическим датчиком. Потому перед тем как приобрести устройство с данной операционной системой, стоит справиться о наличии гироскопа в устройстве. Это можно сделать:

  • найдя список характеристик в Интернете;
  • спросить у консультанта в магазине.

Предпочтительно первое, так как не всегда консультанты осведомлены об особенностях той или иной модели смартфона.

Как определить наличие гироскопического датчика в устройстве?

Как было сказано выше, можно ознакомиться с характеристиками телефона на сайте производителя или магазина, занимающегося его продажей. Чаще всего наличие данного элемента указывается в обязательном порядке.

Еще один вариант - проверка на видео, работающем в 360 градусов. Если при его просмотре есть функция поворота изображения в любом допустимом направлении - значит, датчик присутствует.

И последний вариант - проверка приложением AnTuTu Benchmark. Оно проводит полную диагностику смартфона и в обязательном порядке указывает наличие данного компонента.

Калибровка акселерометра телефона

Наличие такого элемента в современном смартфоне крайне важно. Оно позволяет устройству выполнять ряд крайне важных функций:

  • поворот дисплея;
  • выполнение действий при встряхивании экрана;
  • обеспечение работы шагомера;
  • демонстрация настоящего положения в пространстве.

Далее будет приведен пример того, как откалибровать акселерометр Xiaomi. Данная инструкция подойдет как для мобильных устройств данного производителя, так и для многих других смартфонов на платформе Android. Она достаточно проста и не требует много времени и знаний о работе с функциями телефона. Для запуска калибровки экрана необходимо выполнить следующую последовательность действий:

  • выбрать меню «настройки»;
  • перейти в пункт «дисплей»;
  • нажать на функцию «калибровка акселерометра». Далее она сама проведет настройку правильного отображения изображения на экране в различных положениях.

Итоги

Несмотря на то, что акселерометр и гироскоп появились как устройства для применения в сфере машиностроения, сегодня ни один смартфон не может считаться полноценным, если эти компоненты отсутствуют. Указанные выше функции делают его использование максимально комфортным. Поэтому перед приобретением телефона обязательно убедитесь в их наличии среди списка его основных характеристик.

Акселерометр — что это такое и зачем нужен?.

Наша жизнь состоит из будничных мелочей, которые так или иначе влияют на наше самочувствие, настроение и продуктивность. Не выспался - болит голова; выпил кофе, чтобы поправить ситуацию и взбодриться - стал раздражительным. Предусмотреть всё очень хочется, но никак не получается. Да ещё и вокруг все, как заведённые, дают советы: глютен в хлебе - не подходи, убьёт; шоколадка в кармане - прямой путь к выпадению зубов. Мы собираем самые популярные вопросов о здоровье, питании, заболеваниях и даем на них ответы, которые позволят чуть лучше понимать, что полезно для здоровья.

Акселерометр, или же G-sensor — датчик определяющий угол наклона девайса относительно земли. Каждый владелец смартфона пользуется такой функцией, как автоповорот экрана , а любители мобильных игр сталкивались с управлением автомобилем с помощью наклона телефона.

Этот датчик неплохо дополняет функциональные способности смартфона. Вот основной перечень его функций :

  • Автоматический поворот экрана при смене ориентации смартфона в пространстве.
  • Управление в играх
  • Реакция аппарата на конкретные жесты, и проведение определенных операций (изменение музыкального трека, выключение будильника либо отмена звонка). Например, встряхивание телефона, «постукивающие» движения либо поворот телефона экраном вниз.
  • Распознавание и демонстрирование расположения в пространстве при помощи различных, в том числе и навигационных, программ. Например, компас.
  • Отслеживание активности человека. Самое распространенное применение — подсчет количества шагов и пройденной дистанции

Принцип работы устройства

Акселерометр, это маленький чип , установленный на плате вашего аппарата. Если объяснить просто, то он состоит из инертной массы, прикрепленной к подвижной , гибкой составляющей части. Эта составляющая крепится к неподвижному элементу. С целью подавления случайных или ненужных микроколебаний инертная масса крепится к демпферу .

В период вращения в пространстве или тряске, встроенная в акселерометр, инертная масса реагирует на инертную силу. Чем выше сила наклона, вращения или тряски, тем сильнее деформируется подвижная часть. После всего этого инертная масса возвращается в исходное положение благодаря гибкой, подвижной составляющей чипа акселерометра.

Датчик замеряет уровень смещения от уровня состояния покоя. Эта информация преобразуется в электросигнал, а потом отправляется на обработку электронике и программному обеспечению. Благодаря предоставленной информации программа способна определить различия в физических изменениях расположения смартфона.
Но это была описана упрощенная модель работы акселерометра. Изготовление мобильны акселерометров требует огромнейшей точности расчетов и пропорций. Вручную создать его нельзя, процесс изготовления автоматизирован и применяется химическая реакция среди различных элементов. Акселерометр позволяет перейти на другой, более удобный уровень управления девайсом и играми.