Защита данных в беспроводных сетях коротко. Развитие защиты Wi-Fi

30.10.2019 Программы и сервисы

Несанкционированный доступ – чтение, обновление или разрушение информации при отсутствии на это соответствующих полномочий .

Несанкционированный доступ осуществляется, как правило, с использованием чужого имени, изменением физических адресов устройств, использованием информации, оставшейся после решения задач, модификацией программного и информационного обеспечения, хищением носителя информации, установкой аппаратуры записи.

Для успешной защиты своей информации пользователь должен иметь абсолютно ясное представление о возможных путях несанкционированного доступа. Основные типовые пути несанкционированного получения информации:

· хищение носителей информации и производственных отходов;

· копирование носителей информации с преодолением мер защиты;

· маскировка под зарегистрированного пользователя;

· мистификация (маскировка под запросы системы);

· использование недостатков операционных систем и языков программирования;

· использование программных закладок и программных блоков типа "троянский конь";

· перехват электронных излучений;

· перехват акустических излучений;

· дистанционное фотографирование;

· применение подслушивающих устройств;

· злоумышленный вывод из строя механизмов защиты и т.д..

Для защиты информации от несанкционированного доступа применяются:

1) организационные мероприятия;

2) технические средства;

3) программные средства;

4) шифрование.

Организационные мероприятия включают в себя:

· пропускной режим;

· хранение носителей и устройств в сейфе (дискеты, монитор, клавиатура и т.д.);

· ограничение доступа лиц в компьютерные помещения и т.д..

Технические средства включают в себя:

· фильтры, экраны на аппаратуру;

· ключ для блокировки клавиатуры;

· устройства аутентификации – для чтения отпечатков пальцев, формы руки, радужной оболочки глаза, скорости и приемов печати и т.д.;

· электронные ключи на микросхемах и т.д.

Программные средства включают в себя:

· парольный доступ – задание полномочий пользователя;

· блокировка экрана и клавиатуры с помощью комбинации клавиш в утилите Diskreet из пакета Norton Utilites;

· использование средств парольной защиты BIOS – на сам BIOS и на ПК в целом и т.д.

Шифрование–это преобразование (кодирование) открытой информации в зашифрованную, не доступную для понимания посторонних. Методы шифрования и расшифровывания сообщения изучает наука криптология, история которой насчитывает около четырех тысяч лет.

2.5. Защита информации в беспроводных сетях

Невероятно быстрые темпы внедрения в современных сетях беспроводных решений заставляют задуматься о надежности защиты данных.

Сам принцип беспроводной передачи данных заключает в себе возможность несанкционированных подключений к точкам доступа.

Не менее опасная угроза - вероятность хищения оборудования. Если политика безопасности беспроводной сети построена на МАС-адресах, то сетевая карта или точка доступа, украденная злоумышленником, может открыть доступ к сети.

Часто несанкционированное подключение точек доступа к ЛВС выполняется самими работниками предприятия, которые не задумываются о защите.

Решением подобных проблем нужно заниматься комплексно. Организационные мероприятия выбираются исходя из условий работы каждой конкретной сети. Что касается мероприятий технического характера, то весьма хорошей результат достигается при использовании обязательной взаимной аутентификации устройств и внедрении активных средств контроля.

В 2001 году появились первые реализации драйверов и программ, позволяющих справиться с шифрованием WEP. Самый удачный - PreShared Key. Но и он хорош только при надежной шифрации и регулярной замене качественных паролей (рис.1).

Рисунок 1 - Алгоритм анализа зашифрованных данных

Современные требования к защите

Аутентификация

В настоящее время в различном сетевом оборудовании, в том числе в беспроводных устройствах, широко применяется более современный способ аутентификации, который определен в стандарте 802.1х - пока не будет проведена взаимная проверка, пользователь не может ни принимать, ни передавать никаких данных.

Ряд разработчиков используют для аутентификации в своих устройствах протоколы EAP-TLS и PEAP, Cisco Systems, предлагает для своих беспроводных сетей, помимо упомянутых, следующие протоколы: EAP-TLS, РЕАР, LEAP, EAP-FAST.

Все современные способы аутентификации подразумевают поддержку динамических ключей.

Главный недостаток LEAP и EAP-FAST - эти протоколы поддерживаются в основном в оборудовании Cisco Systems (рис. 2).

Рисунок 2 - Структура пакета 802.11x при использовании TKIP-PPK, MIC и шифрации по WEP.

Шифрование и целостность

На основании рекомендаций 802.11i Cisco Systems реализован протокол ТКIР (Temporal Integrity Protocol), обеспечивающий смену ключа шифрования РРК (Per Packet Keying) в каждом пакете и контроль целостности сообщений MIC (Message Integrity Check).

Другой перспективный протокол шифрования и обеспечения целостности - AES (Advanced Encryption Standart). Он обладает лучшей криптостойкостью по сравнению DES и ГОСТ 28147-89. Он обеспечивает и шифрацию, и целостность.

Заметим, что используемый в нем алгоритм (Rijndael) не требует больших ресурсов ни при реализации, ни при работе, что очень важно для уменьшения времени задержки данных и нагрузки на процессор.

Стандарт обеспечения безопасности в беспроводных локальных сетях - 802,11i.

Стандарт Wi-Fi Protected Access (WPA) - это набор правил, обеспечивающих реализацию защиты данных в сетях 802.11х. Начиная с августа 2003 года соответствие стандартам WPA является обязательным требованием к оборудования, сертифицируемому на звание Wi-Fi Certified.

В спецификацию WPA входит измененный протокол TKOP-PPK. Шифрование производится на сочетании нескольких ключей - текущего и последующего. При этом длина IV увеличена до 48 бит. Это дает возможность реализовать дополнительные меры по защите информации, к примеру ужесточить требования к реассоциациям, реаутентификациям.

Спецификации предусматривают и поддержку 802.1х/EAP, и аутентификацию с разделяемым ключом, и, несомненно, управление ключами.

Таблица 3 - Способы реализации политики безопасности

Показатель

Поддержка современных ОС

Сложность ПО и ресурсоёмкость аутентификации

Сложность управления

Single Sign on (единый логин в Windows)

Динамические ключи

Одноразовые пароли

Продолжение таблицы 3

При условии использования современного оборудования и ПО в настоящее время вполне возможно построить на базе стандартов серии 802.11х защищенную и устойчивую к атакам беспроводную сеть.

Почти всегда беспроводная сеть связана с проводной, а это, помимо необходимости защищать беспроводные каналы, необходимо обеспечивать защиты в проводных сетях. В противном случае сеть будет иметь фрагментарную защиту, что, по сути, является угрозой безопасности. Желательно использовать оборудование, имеющее сертификат Wi-Fi Certified, то есть подтверждающий соответствие WPA.

Нужно внедрять 802.11х/EAP/TKIP/MIC и динамическое управление ключами. В случае смешанной сети следует использовать виртуальные локальные сети; при наличии внешних антенн применяется технология виртуальных частных сетей VPN.

Необходимо сочетать как протокольные и программные способы защиты, так и административные.

В 1997 году вышел первый стандарт IEEE 802.11, безопасность которого, как оказалось, далека от идеала. Простой пароль SSID (Server Set ID) для доступа в локальную сеть по современным меркам нельзя считать защитой, особенно, учитывая факт, что к Wi-Fi не нужно физически подключаться.

Главной же защитой долгое время являлось использование цифровых ключей шифрования потоков данных с помощью функции Wired Equivalent Privacy (WEP). Сами ключи представляют из себя обыкновенные пароли с длиной от 5 до 13 символов ASCII, что соответствует 40 или 104-разрядному шифрованию на статическом уровне. Как показало время, WEP оказалась не самой надёжной технологией защиты. И, кстати, все основные атаки хакеров пришлись как раз-таки на эпоху внедрения WEP.

После 2001 года для проводных и беспроводных сетей был внедрён новый стандарт IEEE 802.1X, который использует вариант динамических 128-разрядных ключей шифрования, то есть периодически изменяющихся во времени. Таким образом, пользователи сети работают сеансами, по завершении которых им присылается новый ключ. Например, Windows XP поддерживает данный стандарт, и по умолчанию время одного сеанса равно 30 минутам.

В конце 2003 года был внедрён стандарт Wi-Fi Protected Access (WPA), который совмещает преимущества динамического обновления ключей IEEE 802.1X с кодированием протокола интеграции временного ключа Temporal Key Integrity Protocol (TKIP), протоколом расширенной аутентификации Extensible Authentication Protocol (EAP) и технологией проверки целостности сообщений Message Integrity Check (MIC).

Помимо этого, параллельно развивается множество самостоятельных стандартов безопасности от различных разработчиков, в частности, в данном направлении преуспевают Intel и Cisco.

В 2004 году появился WPA2, или 802.11i, - максимально защищённый стандарт на сегодняшний день.

Методы передачи и защиты беспроводной сети

Технология размытого спектра известна еще со времен второй мировой войны. Основной принцип - передаваемый сигнал как бы размазан по некоторому частотному диапазону. Само по себе словосочетание "размытый спектр" означает, что для кодирования сигнала используется более широкий частотный диапазон, чем тот, что потребовался бы при передаче только полезной информации. Эта технология получила распространение благодаря высокой помехоустойчивости. Очевидно, что эта ее особенность актуальна и для современного бизнеса, так как компаниям приходится зачастую доверять радиоволнам важную конфиденциальную информацию. Кроме того, технология оказалась относительно дешевой при массовом производстве. Отметим, что максимальная скорость передачи данных в канале зависит только от ширины канала, а не от участка спектра. Передающая станция беспроводной сети постоянно меняет частотный диапазон, в котором ведется передача сигнала. Получается, что одна часть информации передается на одной частоте, другая - на второй, третья - на третьей и т.д. Конкретная последовательность используемых частот называется последовательностью скачков. Она должна быть синхронизирована между передающей и принимающей станцией. В противном случае они не смогут общаться друг с другом. Не зная нужной последовательности и частоты переключения поддиапазонов, расшифровать сигнал практически невозможно. Стандарт определяет 79 каналов и 78 частот, изменяющихся скачкообразно. Метод частотных скачков обеспечивает конфиденциальность и некоторую помехозащищенность передач беспроводной сети. Помехозащищенность обеспечивается тем, что если на каком-то из 79 подканалов передаваемый пакет не удалось принять, то приемник сообщает об этом, и передача этого пакета повторяется на одном из следующих (в последовательности скачков) подканалов. С другой стороны, поскольку при использовании метода частотных скачков на каждом подканале передача ведется на достаточно большой мощности, сравнимой с мощностью обычных узкополосных передатчиков, об этом методе нельзя сказать, что он не мешает другим видам передач. Первый очевидный результат применения этого метода - защита передаваемой информации беспроводной сети от подслушивания. Но более важным оказалось другое свойство, состоящее в том, что благодаря многократной избыточности передачи можно обойтись сигналом очень маленькой мощности (по сравнению с обычной узкополосной технологией), не увеличивая при этом размеров антенн. При этом в беспроводной связи сильно уменьшается отношение сигнал/шум (под шумом имеются в виду случайные или преднамеренные помехи), так что передаваемый сигнал уже как бы неразличим в общем шуме. Тем не менее, благодаря избыточности сигнала принимающее устройство все же сумеет его распознать. Ясно, что при генерации и кодировании избыточных разрядов эффективная частота полученного сигнала возрастает, поэтому для его передачи требуется более широкий диапазон, чем для передачи "чистой" информации, в результате чего спектр и растягивается, или "размывается". Защита информации в беспроводных сетях предлагают четыре уровня средств безопасности: физический, идентификатор набора служб, идентификатор управления доступом к среде и шифрование. Еще одно преимущество беспроводных сетей связано с тем, что физические характеристики сети делают ее локализованной. В результате дальность действия сети ограничивается лишь определенной зоной покрытия. Для подслушивания потенциальный злоумышленник должен будет находиться в непосредственной физической близости, а значит, привлекать к себе внимание. В этом преимущество беспроводных сетей с точки зрения безопасности. Беспроводные сети имеют также уникальную особенность: их можно отключить или модифицировать их параметры, если безопасность зоны вызывает сомнения. Благодаря средствам аутентификации и шифрования данных, злоумышленнику почти невозможно получить доступ к сети или перехватить передаваемые данные. В сочетании с мерами безопасности на сетевом уровне протокола (подключение к беспроводной сети парольного доступа и т.д.), а также функциями безопасности тех или иных конкретных приложений (шифрование, парольный доступ и т.д.) средства безопасности продуктов беспроводной сети открывают путь к безопасной связи.

Итак, вы купили беспроводной адаптер, подключили его в сеть, настроили подключение к интернету – и у вас наступила полная беспроводная свобода. Теперь для доступа в сеть не нужно подключать кабель, достаточно лишь быть в зоне покрытия беспроводной сети – а это намного проще и удобнее. Однако это просто и удобно не только для вас. Ведь, в отличие от проводных сетей, для того, чтобы взломать беспроводные сети, достаточно оказаться в зоне их действия, которая может распространяться за пределы зданий.

Не стоит думать, что вам нечего опасаться в том случае, если вы установили беспроводную сеть дома. Конечно, вряд ли на вашем домашнем компьютере будет храниться какая-то конфиденциальная информация (хотя может быть и такое), и самое большее, на что может рассчитывать злоумышленник – это ваш личный фотоархив и подборка любимой музыки. Однако главная опасность взлома домашних беспроводных сетей состоит не в этом. Обычно предметом интереса хакеров становится ваш доступ в интернет.

Если вы платите за интернет в зависимости от потребляемого трафика, такое несанкционированное подключение может привести к лишним расходам. Счастливые обладатели безлимитных тарифов тоже не могут чувствовать себя спокойно, конечно, если их доступом в интернет начнет пользоваться кто-то еще, они финансово не пострадают. Но при этом есть опасность того, что скорость вашего соединения упадет – это особенно актуально, если любитель халявы не будет скромничать и начнет использовать пиринг через ваш канал на полную катушку.

Ну а говорить о необходимости защиты беспроводных сетей на предприятии не приходится – работа современной организации часто настолько зависит от IT-инфраструктуры, что сбои и нарушения защиты локальных сетей могут полностью разрушить эффективную деятельность.

Шифрование

Шифрование – это один из самых очевидных способов защиты беспроводной сети. В теории все просто – для того, чтобы пользовательское устройство смогло подключиться к беспроводной сети, они должно тем или иным способом подтвердить свое право с помощью аутентификации. Таким образом, для защиты информации в компьютерных сетях достаточно лишь ограничить доступ к сети при помощи паролей или других средств аутентификации.

Исторически первым таким способом защиты беспроводных сетей стало шифрование алгоритмом WEP. Какое-то время назад алгоритм предоставлял достаточно надежную защиту беспроводных сетей, однако в 2001 году криптоаналитиками было проведено несколько исследований, которые обращали внимание на определенные уязвимости этого алгоритма, из-за которых защищенное этим алгоритмом соединение взламывается в течение нескольких минут. Несмотря на то, что такое шифрование лучше, чем передача данных по прямому, незашифрованному соединению, в качестве защиты беспроводных сетей от хакеров беспроводных сетей оно не подходит. Несмотря на это, до сих пор существует большое количество беспроводных сетей, которые защищены именно этим алгоритмом. Это связано с тем, что устаревшее оборудование не поддерживает современные способы защиты информации в компьютерных сетях. Однако, несмотря на ошибки реализации одного способа шифрования, этот подход к защите информации в сетях достаточно эффективен. Поэтому вслед за WEP появился другой алгоритм, лишенный недостатков своего предшественника – WPA.

Помимо устранения ошибок в алгоритме шифрования, этот способ защиты применял новый расширенный протокол аутентификации EAP, временный протокол целостности ключа TKIP и механизм проверки целостности сообщений MIC. Казалось бы, этот внушительный набор технологий должен обеспечивать высокий уровень защиты компьютерных сетей. Однако не так давно, в 2009 году были представлены доказательства того, что любое соединение, защищенное этим протоколом, может быть взломано (причем, при удачных сочетаниях настроек, преодоление защиты компьютерных сетей занимает около 1 минуты). Впрочем, шифрование в качестве метода защиты беспроводных сетей не собирается сдавать свои позиции. В 2004 году, задолго до того, как WPA оказался скомпрометирован, был разработан новый протокол WPA 2. Основное отличие от WPA – это смена принципиально уязвимого способа шифрования RC4 на более стойкий алгоритм AES. На данный момент нет сообщений о том, что такая защита компьютерных сетей может быть взломана.

Однако серьезным камнем преткновения полного внедрения такого современного и стойкого к способам обхода защиты беспроводных сетей от хакеров беспроводных сетей, как WPA2, является его поддержка со стороны клиентских устройств. Нет никаких проблем, если вы развертываете сеть с нуля – все современные устройства, выпущенные после 2006 года, поддерживают этот способ защиты информации в сетях. Однако, если у вас есть беспроводные устройства, которые вы хотели бы использовать в беспроводных сетях, и они при этом не поддерживают WPA2, то не стоит забывать, что шифрование – это не единственный эффективный способ защиты компьютерных сетей.

Фильтрация по MAC-адресам

Достаточно эффективен такой способ защиты локальных сетей, как фильтрация доступа по MAC-адресам. MAC-адрес – это уникальный номер сетевого интерфейса (сетевой карты). Таким образом, зная заранее MAC-адреса доверенных устройств, можно настроить защиту беспроводной сети. Однако, поскольку на современном сетевом оборудовании можно менять заводской MAC-адрес, этот способ защиты информации в сети может оказаться неэффективным. Ведь если злоумышленник каким-то образом получит доступ к доверенному устройству, он может скопировать его MAC-адрес, и, в дальнейшем, использовать его для проникновения в сеть с любого другого устройства (если оно, конечно, поддерживает смену MAC-адреса). Тем не менее, этот способ можно использовать в дополнении с другими, и тем самым усилить защиту беспроводной сети.

Скрытие SSID

Для того, чтобы что-то взломать, это что-то нужно увидеть или по крайней мере знать о его существовании. И если для защиты локальной сети такой способ плохо подходит (попробуйте спрятать провода), то для защиты беспроводных сетей это довольно красивый выход. Дело в том, что по умолчанию точка доступа постоянно транслирует свой SSID – идентификатор беспроводной сети. Именно этот идентификатор замечает сетевая карта вашего ноутбука или коммуникатора, когда на нем появляется сообщение о том, что обнаружена новая беспроводная сеть. Несмотря на то, что отмена трансляции SSID не делает обнаружение сетей в принципе невозможным, злоумышленнику будет гораздо труднее ее обнаружить и еще труднее – подключиться к такой сети. Впрочем, у такого способа защиты информации в сетях есть и определенные недостатки: при подключении новых устройств к существующей беспроводной сети потребуется ввести название сети вручную.

Вообще, такой способ защиты информации, как VPN, был придуман не столько для защиты беспроводных сетей, сколько для того, чтобы организовывать защищенное подключение к удаленной локальной сети через интернет. Однако эта технология прекрасно работает в беспроводных сетях и отлично подходит для защиты локальных сетей. В этом случае сама беспроводная сеть может быть полностью лишена другой защиты, однако при этом в ней не будет открытых ресурсов – все уязвимые ресурсы находятся в виртуальной сети, единственный интерфейс в которую доступен только через беспроводную сеть. Современные алгоритмы шифрования обеспечивают высокую стойкость такого соединения и надежную защиту информации в компьютерных сетях.

Тема защиты беспроводных сетей достаточно обширна, однако общие правила защиты информации в сетях в общем-то одинаковы. Если вы хотите получить по-настоящему стойкую к взлому защиту компьютерных сетей, то лучше комбинировать несколько способов защиты.

Сочетание многослойной системы защиты локальной сети (наиболее продвинутый вариант шифрования, скрытие SSID, фильтрация MAC-адресов и передача данных по VPN) позволит получить эффективную защиту информации в компьютерных сетях. Однако, в погоне за эффективностью постарайтесь соблюдать баланс между надежностью защиты и удобством использования – ведь чем больше в вашей беспроводной сети будет различных проверок и препятствий, тем сложнее ей будет пользоваться. Поэтому, задумываясь о защите локальной сети, подумайте о вероятности хакерской атаки на вашу сеть – не стоит перегружать сеть неоправданными мерами защиты, это может отрицательно сказаться на производительности и привести к потерям пропускной способности.

Последние несколько лет наблюдается расцвет беспроводных технологий. Все большую популярность приобретают сети Wi-Fi (сети стандартов 802.11a/b/g), и если раньше речь шла преимущественно об использовании беспроводных сетей в офисах и хот-спотах, то теперь они широко применяются и в домашних условиях, и для развертывания мобильных офисов (офисы в условиях командировок). Специально для домашних пользователей и небольших офисов продаются точки беспроводного доступа и беспроводные маршрутизаторы класса SOHO, а для мобильных пользователей - карманные беспроводные маршрутизаторы. Однако, принимая решение о переходе к беспроводной сети, следует помнить, что на нынешнем этапе развития она имеет один существенный недостаток - несовершенство в плане безопасности. В данной статье мы расскажем о наиболее уязвимых местах беспроводных сетей и на практических примерах покажем, каким образом они взламываются. Полученные знания можно с успехом использовать для аудита безопасности беспроводных сетей, что позволит избежать традиционных ошибок, допускаемых при развертывании беспроводных сетей. Сначала мы рассмотрим основные меры безопасности, применяемые сегодня для защиты беспроводных сетей, а затем расскажем о том, как они преодолеваются злоумышленниками.

Методы защиты беспроводных сетей

Стандарты беспроводных сетей 802.11a/b/g предусматривают несколько механизмов обеспечения безопасности:

  • режим аутентификации и шифрования данных по протоколу WEP (Wired Equivalent Privacy);
  • режим аутентификации и шифрования данных по протоколу WPA (Wi-Fi Protected Access);
  • фильтрация по MAC-адресам;
  • использование режима скрытого идентификатора сети.

Протокол WEP

Все современные беспроводные устройства (точки доступа, беспроводные адаптеры и маршрутизаторы) поддерживают протокол безопасности WEP, который был изначально заложен в спецификацию беспроводных сетей IEEE 802.11.

Протокол WEP позволяет шифровать поток передаваемых данных на основе алгоритма RC4 с ключом размером 64 или 128 бит. Некоторые устройства поддерживают также ключи в 152, 256 и 512 бит, однако это скорее исключение из правила. Ключи имеют так называемую статическую составляющую длиной 40 и 104 бит соответственно для 64- и 128-битных ключей, а также дополнительную динамическую составляющую размером 24 бита, называемую вектором инициализации (Initialization Vector, IV).

На простейшем уровне процедура WEP-шифрования выглядит следующим образом. Первоначально передаваемые в пакете данные проверяются на целостность (алгоритм CRC-32), после чего контрольная сумма (Integrity Check Value, ICV) добавляется в служебное поле заголовка пакета. Далее генерируется 24-битный вектор инициализации (IV), к которому добавляется статический (40- или 104-битный) секретный ключ. Полученный таким образом 64- или 128-битный ключ является исходным ключом для генерации псевдослучайного числа, используемого для шифрования данных. Далее данные смешиваются (шифруются) с помощью логической операции XOR с псевдослучайной ключевой последовательностью, а вектор инициализации добавляется в служебное поле кадра.

На приемной стороне данные могут быть расшифрованы, поскольку вместе с ними передается информация о векторе инициализации, а статическая составляющая ключа хранится у пользователя, которому передаются данные.

Протокол WEP предусматривает два способа аутентификации пользователей: Open System (открытая) и Shared Key (общая). При открытой аутентификации собственно никакой аутентификации не происходит, то есть получить доступ в беспроводную сеть может любой пользователь. Однако даже в случае открытой системы допускается применение WEP-шифрования данных.

Протокол WAP

В 2003 году был представлен еще один стандарт безопасности - WPA, главной особенностью которого является технология динамической генерации ключей шифрования данных, построенная на базе протокола TKIP (Temporal Key Integrity Protocol), представляющего собой дальнейшее развитие алгоритма шифрования RC4. По протоколу TKIP сетевые устройства работают с 48-битовым вектором инициализации (в отличие от 24-битового вектора WEP) и реализуют правила изменения последовательности его битов, что исключает повторное использование ключей. В протоколе TKIP предусмотрена генерация нового, 128-битного ключа для каждого передаваемого пакета. Кроме того, контрольные криптографические суммы в WPA рассчитываются по новому методу - MIC (Message Integrity Code). В каждый кадр здесь помещается специальный восьмибайтный код целостности сообщения, проверка которого позволяет отражать атаки с применением подложных пакетов. В итоге получается, что каждый передаваемый по сети пакет данных имеет собственный уникальный ключ, а каждое устройство беспроводной сети наделяется динамически изменяемым ключом.

Помимо этого протокол WPA поддерживает шифрование по усовершенствованному стандарту AES (Advanced Encryption Standard), который отличается более стойким, по сравнению с протоколами WEP и TKIP, криптоалгоритмом.

При развертывании беспроводных сетей в домашних условиях или в небольших офисах обычно используется вариант протокола безопасности WPA на основе общих ключей - WPA-PSK (Pre Shared Key). В дальнейшем мы будем рассматривать только вариант WPA-PSK, не касаясь вариантов протокола WPA, ориентированных на корпоративные сети, где авторизация пользователей производится на отдельном RADIUS-сервере.

При использовании WPA-PSK в настройках точки доступа и профилях беспроводного соединения клиентов указывается пароль длиной от 8 до 63 символов.

Фильтрация MAC-адресов

Фильтрация MAC-адресов, которая поддерживается всеми современными точками доступа и беспроводными маршрутизаторами, хотя и не является составной частью стандарта 802.11, тем не менее, как считается, позволяет повысить уровень безопасности беспроводной сети. Для реализации данной функции в настройках точки доступа создается таблица MAC-адресов беспроводных адаптеров клиентов, авторизованных для работы в данной сети.

Режим скрытого идентификатора сети SSID

Еще одна мера предосторожности, которую часто используют в беспроводных сетях, - это режим скрытого идентификатора сети. Каждой беспроводной сети назначается свой уникальный идентификатор (SSID), который представляет собой название сети. При попытке пользователя войти в сеть драйвер беспроводного адаптера прежде сканирует эфир на предмет наличия в ней беспроводных сетей. При использовании режима скрытого идентификатора (как правило, этот режим называется Hide SSID) сеть не отображается в списке доступных и подключиться к ней можно только в том случае, если, во-первых, точно известен ее SSID, а во-вторых, заранее создан профиль подключения к этой сети.

Взлом беспроводных сетей

Ознакомившись с основными методами защиты сетей стандартов 802.11a/b/g, рассмотрим способы их преодоления. Отметим, что для взлома WEP- и WPA-сетей используется один и тот же инструментарий, поэтому сначала расскажем, что входит в арсенал злоумышленника.

Прежде всего нам потребуется ноутбук с беспроводным адаптером. Основная проблема, которая возникает в процессе подбора инструментов для взлома беспроводных сетей, - это обеспечение совместимости между чипом беспроводного адаптера, используемым программным обеспечением, и операционной системой.

Выбор беспроводного адаптера

Дело в том, что большинство утилит, позволяющих взламывать беспроводные сети, «заточены» под Linux-системы. Существуют версии некоторых утилит и под Windows XP. Однако, в зависимости от чипа беспроводного адаптера, определенные беспроводные карты можно использовать с утилитами как под Linux-, так и под Windows XP-системы, а некоторые беспроводные адаптеры могут применяться с утилитами только под Linux- либо только под Windows XP-системы. Имеются беспроводные адаптеры, которые не поддерживаются ни Linux-, ни Windows XP-утилитами. Кроме того, есть такие чипы, которые хотя и поддерживаются утилитами, работают крайне медленно (в смысле захвата и анализа пакетов).

Дело в том, что для выполнения задачи взлома беспроводных сетей необходимы специальные (нестандартные) драйверы для сетевых беспроводных адаптеров. Штатными режимами любого беспроводного адаптера считаются Infrastructure (Basic Service Set, BSS) и ad-hoc (Independent Basic Service Set, IBSS). В режиме Infrastructure каждый клиент подключен к сети через точку доступа, а в режиме ad-hoc беспроводные адаптеры могут общаться друг с другом напрямую, без использования точки доступа. Однако оба эти режима не позволяют беспроводному адаптеру прослушивать эфир и перехватывать пакеты. И в том, и в другом случае сетевой адаптер будет ловить пакеты, которые предназначены лишь для той сети, на которую он настроен. Для того чтобы можно было увидеть другие сети (имеющие скрытый идентификатор ESSID) и захватывать пакеты, существует специальный режим мониторинга (Monitor mode), при переводе в который адаптер не ассоциируется ни с какой конкретной сетью и ловит все доступные пакеты. Обычно драйверы, поставляемые производителем беспроводного адаптера, не поддерживают режим мониторинга, и для того, чтобы задействовать его, необходимо установить специальные драйверы, зачастую написанные группой сторонних разработчиков. Следует сразу отметить, что для операционных систем Windows такие специальные драйверы существуют лишь для беспроводных адаптеров, основанных на чипах Hermes, Realtek, Aironet и Atheros. Поддержка драйвером этого режима для операционных систем семейства Linux/BSD во многом определяется открытостью спецификаций на карту, однако список поддерживаемых устройств значительно шире, чем для семейства Windows. Драйверы для систем на ОС Linux/BSD с поддержкой режима мониторинга можно найти для беспроводных адаптеров на основе следующих чипсетов: Prism, Orinoco, Atheros, Ralink, Aironet, Realtek, Hermes и Intel, при этом драйверы на основе чипов Intel подходят далеко не ко всем устройствам.

В настоящее время все ноутбуки, основанные на мобильной технологии Intel Centrino, имеют встроенные беспроводные адаптеры на базе чипов от Intel (чипы IPW2100, IPW2200, IPW2915, IPW3945), однако для наших целей эти адаптеры подходят плохо - хотя они совместимы с Linux-утилитами, используемыми для взлома, работают эти чипы крайне медленно, а с Windows-утилитами вообще несовместимы.

Выбор операционной системы

Относительно выбора операционной системы можно дать следующие рекомендации. Linux-системы для этих целей более предпочтительны, поскольку при использовании Linux набор возможных инструментов гораздо шире, да и работают Linux-утилиты значительно быстрее. Но это вовсе не означает, что нельзя применять Windows XP вместе с Windows-утилитами. В дальнейшем мы рассмотрим оба варианта взлома беспроводных сетей - то есть с использованием и Linux-, и Windows-утилит. При этом мы прекрасно понимаем, что далеко не все пользователи спешат перейти с Windows на Linux. При всех своих недостатках ОС Windows распространена куда более широко, к тому же для начинающего пользователя она гораздо проще в освоении. Поэтому оптимальным, на наш взгляд, вариантом является применение на ноутбуке в качестве основной операционной системы Windows XP, а для задач взлома беспроводной сети - ОС Linux Live CD, запускающейся с CD-диска и не требующей инсталляции на жесткий диск компьютера. Лучшим решением в нашем случае будет диск BackTrack, который построен на основе ОС Linux (ядро версии 2.6.18.3) и содержит все необходимые пакеты инструментов для взлома сетей. Образ данного диска можно скачать с сайта по ссылке: http://www.remote-exploit.org/backtrack.html .

Набор программного обеспечения

Традиционно для взлома беспроводных сетей используется программный пакет aircrack, который существует в версии как для Windows XP (aircrack-ng 0.6.2-win), так и для Linux (aircrack-ng 0.7). Данный пакет распространяется абсолютно бесплатно, и его можно скачать с официального сайта www.aircrack-ng.org. Искать какие-либо другие утилиты просто не имеет смысла, поскольку данный пакет является лучшим в своем классе решением. Кроме того, он (естественно, Linux-версия) входит в диск BackTrack.

Взлом беспроводных сетей с использованием Live CD-диска BackTrack

Итак, независимо от того, какая операционная система у вас установлена на ноутбуке, для взлома беспроводной сети мы воспользуемся загрузочным диском BackTrack. Отметим, что кроме инструментария, нужного нам для взлома беспроводной сети, данный диск содержит множество других утилит, позволяющих производить аудит сетей (сканеры портов, снифферы и т.д.). Кстати, такой диск полезно иметь любому системному администратору, занимающемуся аудитом сетей.

Взлом любой беспроводной сети с использованием диска BackTrack производится в три этапа (табл. 1):

  • cбор информации о беспроводной сети;
  • захват пакетов;
  • анализ пакетов.

На первом этапе необходимо собрать детальную информацию о беспроводной сети, которая подвергается взлому: MAC-адреса точки доступа и активного клиента беспроводной сети, название сети (идентификатор сети) и тип используемого шифрования. Для этого применяются утилиты airmon-ng, airodump-ng и Kismet - первая из них необходима для настройки драйвера беспроводного сетевого адаптера на режим мониторинга беспроводной сети, а остальные две позволяют получить необходимую информацию о беспроводной сети. Все эти утилиты уже имеются на диске BackTrack.

Таблица 1. Этапы взлома беспроводной сети с использованием Live CD-диска BackTrack

Номер этапа

Описание

Используемые утилиты

Результат

Сбор информации о беспроводной сети

airmon-ng airodump-ng Kismet

MAC-адрес точки доступа, MAC-адрес активного клиента, тип сети, идентификатор сети, тип шифрования (WEP, WPA-PSK), номер канала связи

Перехват пакетов

airodump-ng Kismet airoplay-ng

Анализ пакетов

Подбор ключа

Подбор пароля

На следующем этапе производится захват пакетов с использованием утилиты airodump-ng. В том случае, когда в сети применяется WEP-шифрование, необходимо собрать IV-пакеты, содержащие векторы инициализации. Если трафик в сети невысокий (например, клиент неактивен), то дополнительно для увеличения трафика между клиентом и точкой доступа можно использовать утилиту airoplay-ng.

Если же в сети применяется WPA-PSK-шифрование, то необходимо собрать пакеты, в которых содержится информация о процедуре аутентификации клиента в сети (процедура handshake). Для того чтобы заставить клиента пройти процедуру аутентификации в сети, можно с помощью утилиты airoplay-ng инициировать процесс его принудительного отключения от сети с последующим восстановлением соединения.

На последнем этапе производится анализ перехваченной информации посредством утилиты aircrack-ng. В случае WEP-шифрования вероятность подбора ключа зависит от количества собранных IV-пакетов, а WPA-PSK-шифрования - от словаря, используемого для подбора пароля.

Практические примеры

После краткого описания процедуры взлома беспроводной сети перейдем к рассмотрению практических примеров с подробным описанием каждого этапа и используемых утилит.

В нашем случае мы имели дело с экспериментальной сетью, состоящей из точки доступа D-Link DWL-7000AP и клиента сети с беспроводным PCI-адаптером Gigabyte GN-WPEAG.

Для взлома сети мы применяли ноутбук с беспроводным PCMCIA-адаптером Gigabyte GN-WMAG на основе чипа Atheros. Отметим, что при использовании диска BackTrack никаких дополнительных драйверов для адаптера Gigabyte GN-WPEAG не требуется - все уже имеется на диске.

Этап 1. Сбор информации о беспроводной сети

Итак, на первом этапе нам нужно собрать информацию о беспроводной сети. Вставляем в ноутбук беспроводной адаптер и загружаем с CD-диска операционную систему. Затем вызываем консоль и запускаем утилиту airmon-ng, входящую в пакет aircrack-ng.

Данная утилита позволяет определить имеющиеся беспроводные интерфейсы и назначить режим мониторинга сети на один из доступных интерфейсов.

Синтаксис использования команды airmon-ng следующий:

airmon-ng ,

где опции определяют начало или останов режима мониторинга, - беспроводной интерфейс, подвергнутый мониторингу, а необязательный параметр задает номер канала в беспроводной сети, который подвергнут мониторингу.

Первоначально команда airmon-ng задается без параметров, что позволяет получить список доступных беспроводных интерфейсов. К примеру, в нашем случае ответ на команду airmon-ng был следующий:

Usage:airmon-ng

Interface Chipset Driver

wifi0 Atheros madwifi-ng

ath0 Atheros madwifi-ng VAP (parent: wifi0)

Выбрав в качестве беспроводного интерфейса wifi0, вводим команду airmon-ng start wifi0. В результате получаем еще один интерфейс ath1, который находится в режиме мониторинга (рис. 1).

Рис. 1. Установка режима мониторинга беспроводной сети

Далее необходимо запустить утилиту airodump-ng, применяемую одновременно и для захвата пакетов в беспроводных сетях стандарта 802.11, и для сбора информации о беспроводной сети. Синтаксис использования команды следующий:

airodump-ng .

Возможные опции команды отображены в табл. 2.

Таблица 2. Возможные опции команды airodump-ng

Возможное значение

Описание

Сохранять только IV-пакеты

Использовать демон GPS. В этом случае также будут записываться координаты точки приема

Write (или -w)

Название файла

Указание названия файла для записи. При указании только имени файла он будет сохраняться в рабочей директории программы

Записывать все пакеты без фильтрации

Номер канала (от 1 до 11)

Указание номера канала. По умолчанию происходит прослушивание всех каналов

Указание протокола 802.11a/b/g

В нашем случае в режим мониторинга установлен интерфейс ath1.

Однако пока мы не имеем информации о типе сети (802.11a/b/g), типе шифрования в сети, а следовательно, не знаем, какие пакеты нужно перехватывать (все или только IV-пакеты). Поэтому первоначально не стоит использовать опции в команде airodump-ng, а нужно указать только интерфейс - это позволит нам собрать нужную информацию о сети.

Таким образом, на первом этапе запускаем команду airodump-ng посредством следующего синтаксиса:

airodump-ng ath1

Это позволит нам получить необходимую информацию о сети, а именно:

  • MAC-адрес точки доступа;
  • MAC-адрес клиента;
  • тип сети;
  • ESSID сети;
  • тип шифрования;
  • номер канала связи.

В нашем примере, введя команду airodump-ng ath1, мы смогли определить все необходимые параметры сети (рис. 2):

Рис. 2. Сбор информации о сети
с использованием утилиты airodump-ng

  • MAC-адрес точки доступа - 00:0D:88:56:33:B5;
  • MAC-адрес клиента - 00:0E:35:48:C4:76
  • тип сети - 802.11g;
  • ESSID сети - dlinkG;
  • тип шифрования - WEP;
  • номер канала связи - 11.

Отметим, что утилита airodump-ng позволяет определять идентификатор сети (ESSID) независимо от того, установлен ли на точке доступа режим скрытого идентификатора (Hidden SSID) или нет.

Для сбора информации о сети можно также использовать утилиту Kismet, входящую в диск BackTrack, - в отличие от airodump-ng, она позволяет собрать куда больше информации о беспроводной сети и в этом смысле является полноценным и лучшим в своем классе анализатором беспроводных сетей. Данная утилита имеет графический интерфейс (рис. 3), что значительно облегчает работу с ней.

Рис. 3. Сбор информации о сети
с помощью утилиты Kismet

Этап 2. Перехват пакетов

После того как собрана детальная информация о беспроводной сети, можно приступать к перехвату пакетов с помощью тех же утилит, которые применялись для сбора информации о сети, - airodump-ng или Kismet. Однако в данном случае нам понадобится несколько иной синтаксис команд.

WEP-шифрование

Сначала рассмотрим вариант, когда в сети используется WEP-шифрование. В этом случае нам нужно отфильтровать только пакеты с вектором инициализации (IV-пакеты) и записать их в файл, который в дальнейшем будет применяться для подбора ключа.

К примеру, если известно, что атакуемая сеть является сетью типа 802.11g, в ней используется шифрование WEP и передача ведется на 11-м канале, то синтаксис команды для перехвата пакетов может быть следующий:

airodump-ng --ivs –w dump --band g --channel 11 ath1

В данном примере мы записываем в файл с именем dump только IV-пакеты. Вероятность успешного подбора ключа зависит от количества накопленных IV-пактов и длины ключа. Как правило, при длине ключа 128 бит достаточно накопить порядка 1-2 млн IV-пакетов, а при длине ключа 64 бита - порядка нескольких сотен тысяч пакетов. Однако заранее длина ключа неизвестна и никакая утилита не позволяет ее определить. Поэтому для анализа желательно перехватить не менее 1,5 млн пакетов. На рис. 4 показан пример захвата 1 137 637 IV-пакетов в утилите airodump-ng.

Рис. 4. Захват пакетов посредством утилиты airodump-ng

Количество перехваченных пакетов интерактивно отображается в утилите airodump-ng, а для остановки процесса захвата пакетов нужно просто нажать комбинацию клавиш Ctrl+C.

Утилита Kismet также может использоваться для захвата пакетов. Собственно, процесс перехвата начинается сразу после запуска утилиты, а запись производится в файл с расширением dump, который сохраняется в рабочей директории программы. Однако, в отличие от утилиты airodump-ng, в данном случае невозможно отфильтровать только IV-пакеты и задать номер канала связи. Поэтому в случае применения утилиты Kismet эффективность (скорость накапливания) пакетов ниже, а количество пакетов, которые необходимо перехватить, должно быть больше, чем при использовании утилиты airodump-ng.

Часто при перехвате пакетов возникает ситуация, когда отсутствует интенсивный обмен трафиком между точкой доступа и клиентом, поэтому, чтобы накопить требуемое для успешного взлома сети количество пакетов, приходится ждать очень долго. Однако процесс этот можно ускорить, принудительно заставив общаться клиента с точкой доступа с помощью утилиты aireplay-ng (рис. 5). Данная утилита запускается параллельно с утилитой airodump-ng, для чего нужно запустить еще одну консольную сессию.

Рис. 5. Применение утилиты aireplay-ng для инициализации трафика
между точкой доступа и клиентом

Синтаксис команды следующий:

aireplay-ng

Данная команда имеет очень большое количество разнообразных опций, с которыми можно ознакомиться, запустив команду без параметров.

Для наших целей синтаксис команды будет выглядеть так:

aireplay –ng -e dlinkG -a 00:0d:88:56:33:b5 -c 00:0f:ea:91:7d:95 --deauth 20 ath1

В данном случае параметр -e dlinkG задает идентификатор беспроводной сети; параметр -a 00:0d:88:56:33:b5 - MAC-адрес точки доступа; параметр -c 00:0f:ea:91:7d:95 - MAC-адрес клиента; опция --deauth 20 - атаку на разрыв соединения (20 раз) с последующей аутентификацией клиента. При аутентификации клиента трафик между ним и точкой доступа резко повышается и количество пакетов, которые можно перехватить, возрастает. При необходимости можно увеличить число разрывов соединения или повторять эту команду до тех пор, пока не накопится нужное количество пакетов.

WPA-PSK-шифрование

При WPA-PSK-шифровании в беспроводной сети алгоритм перехвата пакетов несколько иной. В данном случае нам не нужно отфильтровывать IV-пакеты, поскольку при WPA-PSK-шифровании их просто не существует, но и захватывать все пакеты подряд тоже не имеет смысла. Собственно, все, что нам нужно, - это небольшая часть трафика между точкой доступа и клиентом беспроводной сети, в которой бы содержалась информация о процедуре аутентификации клиента в сети (процедура handshake). Но для того, чтобы перехватить процедуру аутентификации клиента в сети, прежде ее необходимо принудительно инициировать с помощью утилиты aireplay-ng.

Поэтому при WPA-PSK-шифровании алгоритм перехвата пакетов будет следующим. Открываем две консольные сессии и в первой сессии запускаем команду на принудительное разъединение сети с последующей повторной идентификацией клиента (утилита aireplay-ng, атака деаутентификации), а во второй сессии с паузой в одну-две секунды запускаем команду на перехват пакетов (утилита airodump-ng). Синтаксисы команд следующие:

aireplay–ng -e dlinkG -a 00:0d:88:56:33:b5 -c 00:0f:ea:91:7d:95 -deauth 10 ath1

airodump-ng –w dump -band g -channel 11 ath1

Как видите, синтаксис команды aireplay-ng точно такой же, как и при WEP-шифровании, когда данная команда использовалась для инициализации трафика между точкой доступа и клиентом сети (единственное различие - это меньшее количество пакетов на деаутентификацию). В синтаксисе команды airodump-ng отсутствует фильтр IV-пакетов.

Процесс захвата пакетов нужно продолжать всего несколько секунд, поскольку при активированной атаке деаутентификации вероятность захвата handshake-пакетов практически стопроцентная.

Этап 3. Анализ пакетов

На последнем этапе проводится анализ перехваченных пакетов с использованием утилиты aircrack-ng, которая запускается в консольной сессии. Естественно, синтаксис команды aircrack-ng различен для WEP- и WPA-PSK-шифрования. Общий синтаксис команды следующий:

aircrack-ng

Возможные опции команды представлены в табл. 3. Отметим, что в качестве файлов, содержащих перехваченные пакеты (capture file(s)), можно указывать несколько файлов с расширением *.cap или *.ivs. Кроме того, при взломе сетей с WEP-шифрованием утилиты airodump-ng и aircrack-ng могут запускаться одновременно (применяются две консольные сессии). При этом aircrack-ng автоматически будет обновлять базу IV-пакетов.

Таблица 3. Возможные опции команды aircrack-ng

Возможное значение

Описание

1 = static WEP, 2 = WPA-PSK

Задает тип атаки (WEP или WPA-PSK)

Если задана опция, будут использоваться все IV-пакеты с одним и тем же значением ESSID. Данная опция также применяется для взлома сетей WPA-PSK, если ESSID не широковещательный (режим скрытого идентификатора сети)

MAC-адрес точки доступа

Выбор сети на основе MAC-адреса точки доступа

Режим скрытой работы. Информация не отображается до тех пор, пока не найден ключ или ключ невозможно подобрать

Для WEP-сетей ограничивает подбор ключа только набором цифр и букв

Для WEP-сетей ограничивает подбор ключа только набором шестнадцатеричных символов

Для WEP-сетей ограничивает подбор ключа только набором цифр

Для WEP-сетей задает начало ключа в шестнадцатеричном формате. Используется для отладки программы

MAC-адрес клиента

Для WEP-сетей задает фильтр пакетов по MAC-адресу клиента. -m ff:ff:ff:ff:ff:ff используется для сбора всех IV-пакетов

64 (для 40-битного ключа) 128 (для 104-битного ключа) 152 (для 128-битного ключа) 256 (для 232-битного ключа) 512 (для 488-битного ключа)

Для WEP-сетей задает длину ключа. По умолчанию длина ключа составляет 104 бита

Для WEP-сетей указывает на сбор IV-пакетов, которые имеют заданный индекс ключей (от 1 до 4). По умолчанию данная опция игнорируется

Параметр применяется при взломе WEP-сетей - для 104-битного ключа значение по умолчанию равно 2, для 40-битных ключей - 5. Более высокое значение данного параметра позволяет вычислять ключи с меньшим количеством пакетов, но за более длительное время

Используется при взломе WEP-сетей. Данный параметр позволяет исключить конкретные типы korek-атак (всего существует 17 типов korek-атак)

Применяется при взломе WEP-сетей. Запрещает поиск последнего символа в ключе

Используется при взломе WEP-сетей. Разрешает поиск последнего символа в ключе (используется по умолчанию)

Применяется при взломе WEP-сетей. Разрешает поиск двух последних символов в ключе

Используется при взломе WEP-сетей. Запрещает применение нескольких процессоров в SMP-системах

Применяется при взломе WEP-сетей. Позволяет использовать специальный (экспериментальный) тип атаки для подбора ключа. Применяется в случае, когда стандартные атаки не позволяют найти ключ при использовании более 1 млн IV-пакетов

Путь к словарю

При WPA-PSK-атаке задает путь к используемому словарю

При использовании WEP-шифрования основная проблема заключается в том, что мы заранее не знаем длину ключа, применяемого для шифрования. Поэтому можно попытаться перебрать несколько вариантов длины ключа, которая задается параметром -n. Если же данный параметр не указывается, то по умолчанию длина ключа устанавливается в 104 бита (-n 128).

Если известна некоторая информация о самом ключе (например, он состоит только из цифр, или только из букв, или только из набора букв и цифр, но не содержит специальных символов), то можно воспользоваться опциями -с, -t и -h.

В нашем случае мы применяли команду aircrack-ng в следующем синтаксисе:

aircrack-ng –a 1 –e dlinkG –b 00:0d:88:56:33:b5 –c 00:0f:ea:91:7d:95 –n 128 dump.ivs.

Здесь указание MAC-адреса точки доступа и клиента, а также ESSID сети является излишним, поскольку использовались всего одна точка доступа и один беспроводной клиент. Однако если клиентов несколько и имеется несколько точек доступа, то необходимо указывать и эти параметры.

В результате нам удалось подобрать 128-битный ключ всего за 25 с (рис. 6). Как видите, взлом сети на основе WEP-шифрования не представляет серьезной проблемы, однако он далеко не всегда заканчивается успехом. Может оказаться, что для подбора ключа накоплено недостаточно IV-пакетов.

Рис. 6. Подбор 128-битного ключа
с использованием утилиты aircrack-ng

При WPA-PSK-шифровании используется следующий синтаксис команды:

aircrack-ng –a 2 –e dlinkG–b 00:0d:88:56:33:b5 –w dict dump.cap.

В данном случае вероятность положительного результата, то есть вероятность подбора пароля целиком, зависит от применяемого словаря. Если пароль в словаре есть, то он будет найден. Словарь, используемый программой aircrack-ng, необходимо предварительно подмонтировать в рабочую папку программы или же прописать полный путь к словарю. Подборку хороших словарей можно найти на сайте www.insidepro.com. Если же и они не помогут, то, скорее всего, пароль представляет собой бессмысленный набор символов. Все-таки словари содержат слова или фразы, а также удобные, легко запоминающиеся сочетания клавиш. Понятно, что произвольный набор символов в словарях отсутствует. Но даже в этом случае выход есть. Некоторые утилиты, предназначенные для подбора паролей, умеют генерировать словари из заданного набора символов и максимальной длины слова. Примером такой программы является PasswordPro v.2.2.5.0.

Тем не менее еще раз отметим, что вероятность взлома WPA-PSK-пароля очень невысока. Если пароль задан не в виде какого-либо слова, а представляет собой случайное сочетание букв и цифр, то подобрать его практически невозможно.

Обобщение

Подводя итог всему рассказанному выше о взломе беспроводных сетей, еще раз перечислим главные этапы этого процесса и используемые на каждом из них команды.

Этап 1. Сбор информации о сети:

Airmon-ng start wifi0;

Airodump-ng ath1.

Этап 2. Сбор пакетов:

  • случай WEP:

Airodump-ng --ivs -w dump --band g --channel 11 ath1,

Aireplay -ng -e dlinkG -a 00:0d:88:56:33:b5 -c 00:0f:ea:91:7d:95 --deauth 20 ath1

(при недостаточном трафике. Команда запускается в отдельной консольной сессии);

  • случай WPA-PSC:

- aireplay-ng -e dlinkG -a 00:0d:88:56:33:b5 -c 00:0f:ea:91:7d:95 --deauth 10 ath1,

Airodump-ng -w dump --band g --channel 11 ath1

(команда запускается в отдельной консольной сессии).

Этап 3. Анализ пакетов:

  • случай WEP:

Aircrack-ng -a 1 -e dlinkG -b 00:0d:88:56:33:b5 -c 00:0f:ea:91:7d:95 -n 128 dump.ivs;

  • случай WPA-PSK:

Aircrack-ng -a 2 -e dlinkG-b 00:0d:88:56:33:b5 -w dict dump.cap.

Взлом беспроводных сетей с помощью пакета aircrack-ng 0.6.2-win и ОС Windows XP

Как мы уже отмечали в начале статьи, существует версия пакета aircrack-ng 0.6.2-win, поддерживаемая операционной системой Windows XP. Сразу отметим, что возможности пакета не столь обширны по сравнению с его Linux-аналогом, а потому, если нет стойкого предубеждения против Linux, то лучше использовать вариант с диском BackTrack.

Первое, с чем придется столкнуться в случае применения Windows-версии программы aircrack-ng, - это необходимость замены штатных драйверов от производителя беспроводного сетевого адаптера на специальные драйверы, которые поддерживают режим мониторинга и перехвата пакетов. Причем, как и в случае с Linux-версией программы, конкретная версия драйвера зависит от чипа, на котором построен сетевой адаптер. К примеру, при использовании нашего беспроводного PCMCIA-адаптера Gigabyte GN-WMAG на базе чипа Atheros AR5004 мы применяли драйвер версии 5.2.1.1 от компании WildPackets.

Сама процедура взлома беспроводной сети с помощью Windows-версии пакета aircrack-ng довольно проста и концептуально повторяет процедуру взлома беспроводных сетей посредством Linux-версии пакета. Она выполняется традиционно в три этапа: сбор информации о сети, перехват пакетов и их анализ.

Для начала работы с утилитой необходимо запустить файл Aircrack-ng GUI.exe, имеющий удобный графический интерфейс и представляющий собой, по сути, графическую оболочку для всех утилит, входящих в пакет aircrack-ng 0.6.2-win. В главном окне программы (рис. 7) имеется несколько закладок, переключаясь между которыми можно активировать нужные утилиты.

Рис. 7. Главное окно утилиты Aircrack-ng GUI

Для сбора необходимой информации о сети необходимо перейти на закладку airdump-ng, после чего в отдельном окне запустится утилита airdump-ng 0.6.2.

При запуске программы airdump-ng 0.6.2 (рис. 8) откроется диалоговое окно, в котором потребуется указать беспроводной сетевой адаптер (Network interface index number), тип чипа сетевого адаптера (Network interface type (o/a)), номер канала беспроводной связи (Channel(s): 1 to 14, 0=all) (если номер канала неизвестен, то можно сканировать все каналы). Кроме того, задается имя выходного файла, в котором хранятся перехваченные пакеты (Output filename prefix), и указывается, требуется ли захватывать все пакеты целиком (CAP-файлы) или только часть пактов с векторами инициализации (IVS-файлы) (Only write WEP IVs (y/n)). При WEP-шифровании для подбора секретного ключа вполне достаточно сформировать только IVS-файл, а при использовании WPA-PSK-шифрования потребуется cap-файл. По умолчанию IVS- или СAP-файлы создаются в той же директории, что и программа airdump-ng 0.6.2.

Рис. 8. Настройка утилиты airdump-ng 0.6.2

После настройки всех опций утилиты airodump-ng 0.6.2 откроется информационное окно, в котором отображается информация об обнаруженных точках беспроводного доступа, информация о клиентах сети и статистика перехваченных пакетов (рис. 9).

Рис. 9. Информационное окно утилиты airodump-ng 0.6.2

Если точек доступа несколько, то будет выдаваться статистика по каждой из них.

Первым делом необходимо записать MAC-адрес точки доступа, SSID беспроводной сети и MAC-адрес одного из подключенных к ней клиентов (если их несколько). Затем нужно подождать, пока не будет перехвачено достаточное количество пакетов. Для останова процесса захвата пакетов (работы утилиты) служит комбинация клавиш Ctrl+C. Отметим, что в Windows-версии пакета не предусмотрено способов, позволяющих принудительно увеличить трафик между точкой доступа и клиентом сети (напомним, что в Linux-версии пакета для этого предусмотрена утилита aireplay-ng).

Основная проблема при взломе WPA-PSK-сетей с использованием Windows-версии программы Aircrack-ng GNU 0.6.2 заключается в том, что в CAP-файл необходимо захватить саму процедуру инициализации клиента в сети, то есть придется посидеть «в засаде» с запущенной программой airodump-ng. После того как в CAP-файл захвачена процедура инициализации клиента сети, можно остановить программу airodump и приступить к процессу расшифровки. Собственно, накапливать перехваченные пакеты в данном случае не нужно, поскольку для вычисления секретного ключа применяются только пакеты, передаваемые между точкой доступа и клиентом в ходе инициализации.

В случае WEP-шифрования после формирования выходного IVS-файла можно приступать к его анализу с помощью утилиты aircrack-ng 0.6.2, для запуска которой опять необходимо открыть главное окно программы Aircrack-ng GUI на соответствующей закладке и настроить утилиту aircrack-ng. При WEP-шифровании настройка утилиты заключается в том, чтобы задать длину WEP-ключа, указать ESSID беспроводной сети, задать MAC-адрес точки доступа, исключить некоторые типы атак (RoreK-атаки), задать при необходимости набор символов, используемый для ключа, и т.д. Здесь предусмотрены все те же настройки, что и в случае Linux-версии данной утилиты. Разница лишь в том, что в Linux-версии все настройки указываются в виде опций в командной строке, а в Windows-версии для настройки утилиты применяется удобный графический интерфейс (рис. 10).

Рис. 11. Результат анализа IVS-файла
утилитой aircrack-ng 0.6.2

Результат анализа IVS-файла показан на рис. 11. Вряд ли строка KEY FOUND! нуждается в комментариях. Обратите внимание: секретный ключ был вычислен всего за 1 с!

При WPA-PSK-шифровании в настройках утилиты aircrack-ng 0.6.2 в качестве выходного файла необходимо использовать именно CAP-, а не IVS-файл. Кроме того, нужно указать путь к применяемому для взлома словарю, который предварительно устанавливается в директорию с программой aircrack-ng 0.6.2 (рис. 12).

Рис. 12. Результат анализа ivs-файла
утилитой aircrack-ng 0.6.2

Результат анализа CAP-файла показан на рис. 13. Однако следует иметь в виду, что положительный результат поиска ключа возможен только в том случае, если пароль присутствует в анализируемом словаре.

Рис. 13. Результат анализа CAP-файла

Обход защиты фильтра по MAC-адресам

В самом начале статьи мы отмечали, что помимо WEP- и WPA-PSK-шифрования часто используются и такие функции, как режим скрытого идентификатора сети и фильтрация по MAC-адресам. Они традиционно относятся к функциям обеспечения безопасности беспроводного соединения.

Как мы уже продемонстрировали на примере пакета aircrack-ng, полагаться на режим скрытого идентификатора сети вообще нельзя. Упомянутая нами утилита airodump-ng все равно покажет вам SSID сети, который впоследствии можно использовать для создания профиля подключения (несанкционированного!) к сети.

Ну а если говорить о такой мере безопасности, как фильтрация по MAC-адресам, то здесь вообще все очень просто. В Интернете можно найти довольно много разнообразных утилит и под Linux, и под Windows, которые позволяют подменять MAC-адрес сетевого интерфейса. В качестве примера можно привести следующие Windows-утилиты: SMAC 2.0 (утилита платная, http://www.klcconsulting.net/smac), MAC MakeUP (утилита бесплатная, www.gorlani.com/publicprj/macmakeup/macmakeup.asp - рис. 14) или MAC Spoofer 2006 (утилита бесплатная).

Рис. 14. Подмена MAC-адреса с использованием утилиты MAC MakeUP

Осуществив такую подмену, можно прикинуться своим и реализовать несанкционированный доступ в беспроводную сеть. Причем оба клиента (настоящий и непрошеный) будут совершенно спокойно существовать в одной сети с одним MAC-адресом, более того - в этом случае непрошеному гостю будет присвоен точно такой же IP-адрес, как и у настоящего клиента сети.

Выводы

Итак, преодолеть всю систему безопасности беспроводной сети на базе WEP-шифрования не представляет никакого труда. Возможно, многие скажут, что это неактуально, поскольку WEP-протокол уж давно умер - его не используют. На смену ему пришел более стойкий протокол WPA. Однако не будем торопиться с выводами. Это действительно так, но только отчасти. Дело в том, что в некоторых случаях для увеличения радиуса действия беспроводной сети разворачиваются так называемые распределенные беспроводные сети (WDS) на базе нескольких точек доступа. Самое интересное заключается в том, что такие сети не поддерживают WPA-протокол и единственной допустимой мерой безопасности в данном случае является применение WEP-шифрования. При этом взламываются WDS-сети абсолютно так же, как и сети на базе одной точки доступа. Кроме того, КПК, оснащенные беспроводным модулем, тоже не поддерживают протокол WPA, поэтому для включения клиента на базе КПК в беспроводную сеть необходимо использовать в ней протокол WEP. Следовательно, протокол WEP еще долгое время будет востребован в беспроводных сетях.

Рассмотренные нами примеры взлома беспроводных сетей весьма наглядно демонстрируют их уязвимость. Если говорить о WEP-протоколе, то его можно сравнить с защитой «от дурака». Это примерно то же самое, что сигнализация на машине, - только от хулиганов и спасает. Что касается таких мер предосторожности, как фильтрация по MAC-адресам и режим скрытого идентификатора сети, то их вообще рассматривать как защиту нельзя. Тем не менее даже такими средствами не стоит пренебрегать, правда только в комплексе с другими мерами.

Протокол WPA, хотя и гораздо более сложен для взлома, но тоже уязвим. Впрочем, не стоит падать духом - не все так безнадежно. Дело в том, что успех взлома секретного WPA-ключа зависит от того, есть он в словаре или нет. Стандартный словарь, который мы использовали, имеет размер чуть более 40 Мбайт, что, в общем-то, не так много. После трех попыток мы сумели подобрать ключ, которого не оказалось в словаре, и взлом сети оказался невозможным. Количество слов в этом словаре - всего 6 475 760, что, конечно же, очень мало. Можно использовать словари и большей емкости, к примеру в Интернете можно заказать словарь на трех CD-дисках, то есть размером почти в 2 Гбайт, но даже он содержит далеко не все возможные пароли. Действительно, давайте приблизительно рассчитаем количество паролей длиной от 8 до 63 символов, которые можно сформировать с использованием 26 букв английского алфавита (с учетом регистров), десяти цифр и 32 букв русского алфавита. Получится, что каждый символ можно выбрать 126 способами. Соответственно если учитывать только пароли длиной 8 символов, то количество возможных комбинаций составит 1268=6,3·1016. Если размер каждого слова длиной 8 символов составляет 8 байт, то размер такого словаря составит 4,5 млн Тбайт. А ведь это только комбинации из восьми символов! Какой же получится словарь, если перебрать все возможные комбинации от 8 до 63 символов?! Не надо быть математиком, чтобы подсчитать, что размер такого словаря составит примерно 1,2·10119 Тбайт.

Так что не стоит отчаиваться. Шанс, что применяемый вами пароль не содержится в словаре, велик. Просто при выборе пароля не следует использовать слова, имеющие смысл. Лучше всего, если это будет беспорядочный набор символов - что-нибудь типа «FGпроукqweRT4j563апп».

Эта статья посвящена вопросу безопасности при использовании беспроводных сетей WiFi.

Введение - уязвимости WiFi

Главная причина уязвимости пользовательских данных, когда эти данные передаются через сети WiFi, заключается в том, что обмен происходит по радиоволне. А это дает возможность перехвата сообщений в любой точке, где физически доступен сигнал WiFi. Упрощенно говоря, если сигнал точки доступа можно уловить на дистанции 50 метров, то перехват всего сетевого трафика этой WiFi сети возможен в радиусе 50 метров от точки доступа. В соседнем помещении, на другом этаже здания, на улице.

Представьте такую картину. В офисе локальная сеть построена через WiFi. Сигнал точки доступа этого офиса ловится за пределами здания, например на автостоянке. Злоумышленник, за пределами здания, может получить доступ к офисной сети, то есть незаметно для владельцев этой сети. К сетям WiFi можно получить доступ легко и незаметно. Технически значительно легче, чем к проводным сетям.

Да. На сегодняшний день разработаны и внедрены средства защиты WiFi сетей. Такая защита основана на шифровании всего трафика между точкой доступа и конечным устройством, которое подключено к ней. То есть радиосигнал перехватить злоумышленник может, но для него это будет просто цифровой "мусор".

Как работает защита WiFi?

Точка доступа, включает в свою WiFi сеть только то устройство, которое пришлет правильный (указанный в настройках точки доступа) пароль. При этом пароль тоже пересылается зашифрованным, в виде хэша. Хэш это результат необратимого шифрования. То есть данные, которые переведены в хэш, расшифровать нельзя. Если злоумышленник перехватит хеш пароля он не сможет получить пароль.

Но каким образом точка доступа узнает правильный указан пароль или нет? Если она тоже получает хеш, а расшифровать его не может? Все просто - в настройках точки доступа пароль указан в чистом виде. Программа авторизации берет чистый пароль, создает из него хеш и затем сравнивает этот хеш с полученным от клиента. Если хеши совпадают значит у клиента пароль верный. Здесь используется вторая особенность хешей - они уникальны. Одинаковый хеш нельзя получить из двух разных наборов данных (паролей). Если два хеша совпадают, значит они оба созданы из одинакового набора данных.

Кстати. Благодаря этой особенности хеши используются для контроля целостности данных. Если два хеша (созданные с промежутком времени) совпадают, значит исходные данные (за этот промежуток времени) не были изменены.

Тем, не менее, не смотря на то, что наиболее современный метод защиты WiFi сети (WPA2) надежен, эта сеть может быть взломана. Каким образом?

Есть две методики доступа к сети под защитой WPA2:

  1. Подбор пароля по базе паролей (так называемый перебор по словарю).
  2. Использование уязвимости в функции WPS.

В первом случае злоумышленник перехватывает хеш пароля к точке доступа. Затем по базе данных, в которой записаны тысячи, или миллионы слов, выполняется сравнение хешей. Из словаря берется слово, генерируется хеш для этого слова и затем этот хеш сравнивается с тем хешем который был перехвачен. Если на точке доступа используется примитивный пароль, тогда взлом пароля, этой точки доступа, вопрос времени. Например пароль из 8 цифр (длина 8 символов это минимальная длина пароля для WPA2) это один миллион комбинаций. На современном компьютере сделать перебор одного миллиона значений можно за несколько дней или даже часов.

Во втором случае используется уязвимость в первых версиях функции WPS. Эта функция позволяет подключить к точке доступа устройство, на котором нельзя ввести пароль, например принтер. При использовании этой функции, устройство и точка доступа обмениваются цифровым кодом и если устройство пришлет правильный код, точка доступа авторизует клиента. В этой функции была уязвимость - код был из 8 цифр, но уникальность проверялась только четырьмя из них! То есть для взлома WPS нужно сделать перебор всех значений которые дают 4 цифры. В результате взлом точки доступа через WPS может быть выполнен буквально за несколько часов, на любом, самом слабом устройстве.

Настройка защиты сети WiFi

Безопасность сети WiFi определяется настройками точки доступа. Несколько этих настроек прямо влияют на безопасность сети.

Режим доступа к сети WiFi

Точка доступа может работать в одном из двух режимов - открытом или защищенном. В случае открытого доступа, подключиться к точке досутпа может любое устройство. В случае защищенного доступа подключается только то устройство, которое передаст правильный пароль доступа.

Существует три типа (стандарта) защиты WiFi сетей:

  • WEP (Wired Equivalent Privacy) . Самый первый стандарт защиты. Сегодня фактически не обеспечивает защиту, поскольку взламывается очень легко благодаря слабости механизмов защиты.
  • WPA (Wi-Fi Protected Access) . Хронологически второй стандарт защиты. На момент создания и ввода в эксплуатацию обеспечивал эффективную защиту WiFi сетей. Но в конце нулевых годов были найдены возможности для взлома защиты WPA через уязвимости в механизмах защиты.
  • WPA2 (Wi-Fi Protected Access) . Последний стандарт защиты. Обеспечивает надежную защиту при соблюдении определенных правил. На сегодняшний день известны только два способа взлома защиты WPA2. Перебор пароля по словарю и обходной путь, через службу WPS.

Таким образом, для обеспечения безопасности сети WiFi необходимо выбирать тип защиты WPA2. Однако не все клиентские устройства могут его поддерживать. Например Windows XP SP2 поддерживает только WPA.

Помимо выбора стандарта WPA2 необходимы дополнительные условия:

Использовать метод шифрования AES.

Пароль для доступа к сети WiFi необходимо составлять следующим образом:

  1. Используйте буквы и цифры в пароле. Произвольный набор букв и цифр. Либо очень редкое, значимое только для вас, слово или фразу.
  2. Не используйте простые пароли вроде имя + дата рождения, или какое-то слово + несколько цифр, например lena1991 или dom12345 .
  3. Если необходимо использовать только цифровой пароль, тогда его длина должна быть не менее 10 символов. Потому что восьмисимвольный цифровой пароль подбирается методом перебора за реальное время (от нескольких часов до нескольких дней, в зависимости от мощности компьютера).

Если вы будете использовать сложные пароли, в соответствии с этими правилами, то вашу WiFi сеть нельзя будет взломать методом подбора пароля по словарю. Например, для пароля вида 5Fb9pE2a (произвольный буквенно-цифровой), максимально возможно 218340105584896 комбинаций. Сегодня это практически невозможно для подбора. Даже если компьютер будет сравнивать 1 000 000 (миллион) слов в секунду, ему потребуется почти 7 лет для перебора всех значений.

WPS (Wi-Fi Protected Setup)

Если точка доступа имеет функцию WPS (Wi-Fi Protected Setup), нужно отключить ее. Если эта функция необходима, нужно убедиться что ее версия обновлена до следующих возможностей:

  1. Использование всех 8 символов пинкода вместо 4-х, как это было вначале.
  2. Включение задержки после нескольких попыток передачи неправильного пинкода со стороны клиента.

Дополнительная возможность улучшить защиту WPS это использование цифробуквенного пинкода.

Безопасность общественных сетей WiFi

Сегодня модно пользоваться Интернет через WiFi сети в общественных местах - в кафе, ресторанах, торговых центрах и т.п. Важно понимать, что использование таких сетей может привести к краже ваших персональных данных. Если вы входите в Интернет через такую сеть и затем выполняете авторизацию на каком-либо сайта, то ваши данные (логин и пароль) могут быть перехвачены другим человеком, который подключен к этой же сети WiFi. Ведь на любом устройстве которое прошло авторизацию и подключено к точке доступа, можно перехватывать сетевой трафик со всех остальных устройств этой сети. А особенность общественных сетей WiFi в том, что к ней может подключиться любой желающий, в том числе злоумышленник, причем не только к открытой сети, но и к защищенной.

Что можно сделать для защиты своих данных, при подключении к Интерне через общественную WiFi сеть? Есть только одна возможность - использовать протокол HTTPS. В рамках этого протокола устанавливается зашифрованное соединение между клиентом (браузером) и сайтом. Но не все сайты поддерживают протокол HTTPS. Адреса на сайте, который поддерживает протокол HTTPS, начинаются с префикса https://. Если адреса на сайте имеют префикс http:// это означает что на сайте нет поддержки HTTPS или она не используется.

Некоторые сайты по умолчанию не используют HTTPS, но имеют этот протокол и его можно использовать если явным образом (вручную) указать префикс https://.

Что касается других случаев использования Интернет - чаты, скайп и т.д, то для защиты этих данных можно использовать бесплатные или платные серверы VPN. То есть сначала подключаться к серверу VPN, а уже затем использовать чат или открытый сайт.

Защита пароля WiFi

Во второй и третьей частях этой статьи я писал, о том, что в случае использования стандарта защиты WPA2, один из путей взлома WiFi сети заключается в подборе пароля по словарю. Но для злоумышленника есть еще одна возможность получить пароль к вашей WiFi сети. Если вы храните ваш пароль на стикере приклеенном к монитору, это дает возможность увидеть этот пароль постороннему человеку. А еще ваш пароль может быть украден с компьютера который подключен к вашей WiFi сети. Это может сделать посторонний человек, в том случае если ваши компьютеры не защищены от доступа посторонних. Это можно сделать при помощи вредоносной программы. Кроме того пароль можно украсть и с устройства которое выносится за пределы офиса (дома, квартиры) - со смартфона, планшета.

Таким образом, если вам нужна надежная защита вашей WiFi сети, необходимо принимать меры и для надежного хранения пароля. Защищать его от доступа посторонних лиц.

Если вам оказалась полезна или просто понравилась эта статья, тогда не стесняйтесь - поддержите материально автора. Это легко сделать закинув денежек на Яндекс Кошелек № 410011416229354 . Или на телефон +7 918-16-26-331 .

Даже небольшая сумма может помочь написанию новых статей:)