Что такое протокол маршрутизации. Типы компьютерных сетей

22.04.2019 Программы и сервисы

Маршрутизаторы объединяют сегменты сетей или отдельные локальные сети в составную (распределенную) сеть. Маршрутизаторы функционируют в дейтаграммных сетях с коммутацией пакетов, где все возможные маршруты уже существуют. Поэтому пакету нужно лишь выбрать наилучший путь, на основе метрики протокола маршрутизации. Процесс прокладывания пути производится последовательно от одного маршрутизатора к другому. Этот процесс маршрутизации (routing ) является функцией Уровня 3 модели OSI. При прокладывании пути пакета маршрутизатор анализирует сетевой адрес узла назначения, заданный в заголовке пакета, вычленяет из него адрес сети, чтобы идентифицировать сеть адресата в пределах сети Интернет. Адреса сетей назначения хранятся в таблице маршрутизации. Поэтому маршрутизатор должен создавать и поддерживать таблицы маршрутизации, а также извещать другие маршрутизаторы о всех известных ему изменениях в топологии сети.

Совокупность сетей, представленных набором маршрутизаторов под общим административным управлением, образует автономную систему (рис. 9.1). Автономные системы нумеруются и в некоторых протоколах (IGRP, EIGRP) эти номера используются.

Рис. 9.1. Взаимодействие автономных систем

Маршрутизацию, т.е. прокладывание маршрута внутри автономных систем, осуществляют маршрутизирующие протоколы внутреннего шлюза (Interior Gateway Protocols - IGP s), к которым относятся RIP, RIPv2, IGRP, EIGRP, OSPF, Intermediate System-to-Intermediate System (IS-IS). Маршрутизацию между автономными системами производят протоколы внешнего шлюза (Exterior Gateway Protocols - EGP s). Примером протокола внешнего шлюза является протокол BGP, который работает на граничных маршрутизаторах автономных систем (рис. 9.1).

Маршрутизирующие протоколы, работающие внутри автономных систем, в свою очередь, подразделяются на протоколы вектора расстояния (distance - vector ) и протоколы состояния канала (link - state ). Протоколы distance-vector определяют расстояние и направление, т.е. вектор некоторого соединения в составной сети. Расстояние может быть выражено в количестве маршрутизаторов или переходов (hop count ) в соединении на пути от узла источника к адресату назначения или других значениях метрики. При использовании алгоритма distance-vector маршрутизаторы посылают всю или часть таблицы маршрутизации соседним (смежным) маршрутизаторам через определенные интервалы времени. В таких протоколах как RIP, обмен обновлениями (update ) или модификациями происходит, даже если в сети нет никаких изменений , на что затрачивается довольно большая часть полосы пропускания. Получив обновление маршрутной информации, маршрутизатор может заново вычислить все известные пути и произвести изменения в таблице маршрутизации.

Когда пакет прибывает на входной интерфейс, маршрутизатор должен использовать таблицу маршрутизации, чтобы определить, по какому маршруту направить пакет, т.е. на какой свой выходной интерфейс передать поступивший пакет. Выходной интерфейс связан с наиболее рациональным маршрутом к адресату назначения. Этот процесс называется коммутацией или продвижением пакета. На выходном интерфейсе пакет инкапсулируется в новый кадр, при этом маршрутизатор добавляет информацию для формирования кадра (см. Лекцию 8).

Таким образом, маршрутизатор ретранслирует пакет, используя две основных функции:

- функцию определения пути с использованием сетевой части адреса,

- функцию коммутации , принимая пакет на входной интерфейс и продвигая его на выходной интерфейс, который определяется функцией определения пути.

Определение наиболее рационального (оптимального) пути производится маршрутизатором на основе некоторого критерия – метрики . Значение метрики используется при оценке возможных путей. Метрика может включать разные параметры, например:

Полосу пропускания,

Задержку,

Надежность,

Загрузку,

Обобщенную стоимость и другие параметры сетевого соединения.

Маршрутизаторы могут использовать один какой-то параметр или комбинацию параметров метрики при выборе оптимального маршрута.

Маршрутная информация может быть сконфигурирована сетевым администратором – при этом реализуется статическая маршрутизация . Динамическая маршрутизация реализуется протоколами маршрутизации, когда маршрутная информация собирается в ходе динамического процесса обмена обновлениями (модификациями) между маршрутизаторами, который выполняется в сети.

Таким образом, протоколы маршрутизации (routing protocol) позволяют выбирать маршрутизаторам наилучший путь для данных от источника да устройства назначения. Для этого маршрутизирующие протоколы создают и поддерживают (модифицируют) таблицы маршрутизации путем обмена маршрутной информацией с другими маршрутизаторами в сети. Примерами протоколов маршрутизации являются:

RIP (Routing Information Protocol)

IGRP (Interior Gateway Routing Protocol)

EIGRP (Enhanced Interior Gateway Routing Protocol)

OSPF (Open Shortest Path First).

Маршрутизаторы способны поддерживать много независимых протоколов и таблиц маршрутизации для нескольких сетевых протоколов. Эта способность позволяет маршрутизатору передавать пакеты различных сетевых протоколов по тем же самым каналам связи.

Протоколы и устройства Уровня 2 и Уровня 3 модели OSI постоянно взаимодействуют при передаче данных по сети (рис. 9.2).

Рис.9.2. Взаимодействие протоколов и устройств

Это проявляется в виде взаимодействия таблиц ARP (табл.9.1), функционирующих на Уровне 2, и таблиц маршрутизации протоколов Уровня 3 модели OSI. Каждый компьютер и порт маршрутизатора поддерживает таблицы ARP, каждая строка которых содержит пару соответствующих IP- и MAC-адресов и функционируют только в пределах широковещательного домена, т.е. в пределах сети или подсети.

Таблица 9.1

Таблица ARP маршрутизатора А

МАС адрес

Таблицы маршрутизации позволяют передавать пакеты за пределы широковещательного домена. Строки таблицы маршрутизации (табл.9.2) с меткой С отображают непосредственно присоединенные к маршрутизатору сети, а с меткой R – сети, путь к которым проложен с помощью протокола RIP. В каждой строке также представлены: расстояние до сети назначения, выраженное в количестве переходов между маршрутизаторами (hop); выходной интерфейс маршрутизатора на пути к сети назначения.

Таблица 9.2

Таблица маршрутизации маршрутизатора А

Адрес сети назначения

Число переходов

Интерфейс

На Уровне 2 модели OSI функционируют коммутаторы, которые соединяют сегменты одной локальной сети или подсети, используя МАС-адреса. Для соединения с хостами вне локальной сети коммутатор продвигает кадр на маршрутизатор. Хост использует МАС-адрес входного интерфейса маршрутизатора как адрес назначения. Неизвестный МАС-адрес хост узнает из таблицы ARP. Маршрутизатор cверяет IP-адрес сети назначения с таблицей маршрутизации и продвигает пакет на выходной порт в соответствие с найденной строкой таблицы маршрутизации.

Поскольку коммутаторы не блокируют широковещательные передачи, то сети на коммутаторах могут быть затоплены широковещательными штормами. Маршрутизаторы блокируют широковещательные передачи, поэтому широковещательный шторм может быть только в пределах широковещательного домена (broadcast domain). Поэтому маршрутизаторы по сравнению с коммутаторами обеспечивают большую безопасность и контроль полосы пропускания.

Маршрутизаторы используют протоколы маршрутизации, чтобы создавать и поддерживать таблицы маршрутизации для определения маршрута. При этом таблицы маршрутизаторов разных фирм производителей и разных протоколов маршрутизации могут иметь несколько различающуюся маршрутную информацию. В большинстве случаев таблицы маршрутизации содержат:

    Тип протокола , который идентифицирует протокол маршрутизации, который создавал каждый вход (строку) таблицы.

    Следующий переход (Next-hop) – указывает адрес входного интерфейса следующего маршрутизатора на пути к адресату назначения.

    Метрику , которая различается для разные протоколов.

    Выходной интерфейс , через который данные должны быть отправлены к устройству назначения.

Маршрутизаторы поддерживают таблицы маршрутизации через обмен обновлениями или модификациями (update ). Некоторые протоколы передают обновления периодически, например, протоколы RIP, IGRP. Другие протоколы посылают модификации только когда происходят изменения в сетевой топологии, например, OSPF, EIGRP.

Маршрутизаторы, зная информацию о пути к некоторым сетям, обмениваются этой информацией с другими маршрутизаторами. Следовательно, после таких обновлений или модификаций все маршрутизаторы в сети будут иметь согласованную информацию о маршрутах к доступным сетям. Таким образом, маршрутизирующие протоколы разделяют сетевую информацию между маршрутизаторами .

Различные протоколы маршрутизации используют разные алгоритмы при выборе маршрута, т.е. выходного порта, на который должен быть передан пакет. Алгоритм и метрика определяются целым рядом решаемых задач, таких как простота, устойчивость, гибкость, быстрая сходимость (convergence ). Сходимость это процесс согласования между всеми маршрутизаторами сети о доступных маршрутах. При изменениях состояния сети необходимо, чтобы обмен модификациями восстановил согласованную сетевую информацию.

Каждый алгоритм по своему интерпретирует выбор наиболее рационального пути на основе метрики. Обычно меньшее значение метрики соответствует лучшему маршруту. Метрика может базироваться на одном или на нескольких параметрах пути. В протоколах маршрутизации наиболее часто используются следующие метрики:

    Полоса пропускания (Bandwidth) – способность соединения передавать данные с некоторой скоростью, например, соединения сети Ethernet предпочтительней линии со скоростью 64 кбит/с.

    Задержка (Delay) – это длительность времени прохождения пакета от источника до адресата назначения. Задержка зависит от количества промежуточных соединений и их типов, объема буферных устройств маршрутизаторов, сходимости сети и расстояния между узлами. (Load) – загрузка определяется количеством информации, загружающей сетевые ресурсы (маршрутизаторы и каналы). Чем больше загрузка, тем дольше пакет будет в пути.

    Надежность (Reliability) – надежность определяется интенсивностью ошибок на каждом сетевом соединении.

    Количество переходов (Hop count) – это количество маршрутизаторов, через которые пакет должен пройти на пути к адресату назначения (число переходов от маршрутизатора к маршрутизатору).

    Стоимость (Cost) –это обобщенный параметр затрат на передачу пакета к адресату назначения. Обычно стоимость имеет произвольное значение, назначенное администратором. Часто стоимость базируется на полосе пропускания.

Протоколы маршрутизации.

Протоколы маршрутизации (например, RIP, OSPF, NLSP) следует отличать от собственно сетевых протоколов (например, IP, IPX). И те и другие выполняют функции сетевого уровня модели OSI - участвуют в доставке пакетов адресату через разнородную составную сеть. Но в то время как первые собирают и передают по сети чисто служебную информацию, вторые предназначены для передачи пользовательских данных, как это делают протоколы канального уровня. Протоколы маршрутизации используют сетевые протоколы как транспортное средство. При обмене маршрутной информацией пакеты протокола маршрутизации помещаются в поле данных пакетов сетевого уровня или даже транспортного уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации формально следовало бы отнести к более высокому уровню, чем сетевой.

Каждый маршрутизатор может поддерживать несколько сетевых протоколов и протоколов маршрутизации.

Протоколы маршрутизации определяют топологию сети и сохраняют информацию о ней в таблице маршрутизации. Если маршрутизатор не применяет протокол маршрутизации, он хранит статические маршруты или использует отдельный протокол на каждом интерфейсе. Обычно маршрутизаторы работают с одним протоколом маршрутизации.

Информация о маршрутизации содержит метрику, то есть меру времени или расстояния, и несколько отметок о времени. Информация о пересылке включает в себя данные о выходном интерфейсе и адрес следующей системы по пути. Обычно маршрутизаторы хранят данные о нескольких возможных следующих транзитных маршрутизаторах в одной строке таблицы.

Протоколы маршрутизации выполняют две важнейшие функции .

Во-первых , с их помощью определяется оптимальный путь передачи пакета по сети. Обычно избирается путь, обеспечивающий минимальное время доставки при максимальной надежности.

Протокол маршрутизации предполагает постоянный сбор информации о состоянии маршрутов и обновление таблиц маршрутизации при изменении топологии сети, вследствие отказов или перегрузок. Таким образом, таблицы маршрутизации всегда содержат точную информацию о топологии сети.

Во-вторых , функцией протоколов маршрутизации является передача пакетов по сети. Получая очередной пакет, маршрутизатор считывает адрес назначения из заголовка пакета и определяет, в каком направлении (через какой узел) следует осуществить дальнейшую передачу пакета. Для принятия такого решения используется информация из таблицы маршрутизации.

Протоколы, используемые при создании таблицы маршрутизации, можно разделить на три категории:

Протоколы длины вектора расстояния;

Протоколы состояния канала;

Протоколы политики маршрутизации.

Протоколы длины вектора - простейший и наиболее распространенный тип протоколов маршрутизации. Большинство используемых сегодня протоколов этого типа ведет свое начало от протокола Routing Information Protocol компании Xerox (иногда они даже так и называются). Протоколы данного класса включают RIP (стека ТСР/IP), RIP (стека IPX/SPX) , протокол управления таблицей маршрутизации AppleTalk RTMP и Cisco IGRP (Interior Gateway Routing Protocol).

Периодически каждый маршрутизатор копирует адреса получателей и метрику из своей таблицы маршрутизации и помещает эту информацию в рассылаемые соседям сообщения об обновлении. Соседние маршрутизаторы сверяют полученные данные со своими собственными таблицами маршрутизации и вносят необходимые изменения.

Этот алгоритм прост и, как кажется на первый взгляд, надежен. К сожалению, он работает наилучшим образом в небольших сетях при (желательно полном) отсутствии избыточности. Крупные сети не могут обойтись без периодического обмена сообщениями для описания сети, однако большинство из них избыточны. По этой причине в сложных сетях возникают проблемы при выходе линий связи из строя, так как несуществующие маршруты могут оставаться в таблице маршрутизации в течение длительного периода времени. Трафик, направленный по такому маршруту, не достигнет своего адресата.

Вторую категорию протоколов обслуживания среды составляют протоколы состояния канала. Протоколы состояния канала сложнее, чем протоколы длины вектора. Взамен они предлагают детерминистское решение типичных для их предшественников проблем. Вместо рассылки соседям содержимого своих таблиц маршрутизации каждый маршрутизатор осуществляет широковещательную рассылку списка маршрутизаторов, с которыми он имеет непосредственную связь, и напрямую подключенных к нему локальных сетей. Эта информация о состоянии канала рассылается в специальных объявлениях. За исключением широковещания периодических сообщений о своем присутствии в сети, маршрутизатор рассылает объявления о состоянии каналов только в случае изменения информации о них или по истечении заданного периода времени.

Недостатком таких протоколов состояния каналов, как OSPF, IS-IS и NLSP , является их сложность и высокие требования к памяти. Они трудны в реализации и нуждаются в значительном объеме памяти для хранения объявлений о состоянии каналов.

К третьей категории протоколов по обслуживанию среды относятся протоколы правил маршрутизации . Если протоколы маршрутизации на базе алгоритмов длины вектора и состояния канала решают задачу наиболее эффективной доставки сообщения получателю, то задача маршрутизации - наиболее эффективная доставка сообщения получателю по разрешенным путям. Такие протоколы, как BGP (Border Gateway Protocol) или IDRP (Interdomain Routing Protocol), позволяют операторам Internet получать информацию о маршрутизации от соседних операторов на основе контрактов или других нетехнических критериев. Алгоритмы, используемые для политики маршрутизации, опираются на алгоритмы длины вектора, но информация о метрике и пути базируется на списке операторов магистрали.

Внутренний протокол маршрутизации RIP Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей (алгоритм Белмана - Форда). Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в О C Unix (4BSD)


Протокол RIP должен быть способен обрабатывать три типа ошибок: Циклические маршруты. Так как в протоколе нет механизмов выявления замкнутых маршрутов, необходимо либо слепо верить партнерам, либо принимать меры для блокировки такой возможности. Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (


Несоответствие маршрутной таблицы реальной ситуации типично не только для RIP, но характерно для всех протоколов, базирующихся на векторе расстояния, где информационные сообщения актуализации несут в себе только пары кодов: адрес места назначение и расстояние до него. Рис. Иллюстрация, поясняющее возникновение циклических маршрутов при использовании вектора расстояния.



Значения кодов поля команда: Зарезервированы для внутренних целей sun microsystem. 5-6 Выключение режима трассировки (устарело);4 Включение режима трассировки (устарело);3 Отклик, содержащий информацию о расстояниях из маршрутной таблицы отправителя; 2 Запрос на получение частичной или полной маршрутной информации; 1 Значение Команд а


НЕДОСТАТКИ RIP: RIP не работает с адресами субсетей. Если нормальный 16-бит идентификатор ЭВМ класса B не равен 0, RIP не может определить является ли не нулевая часть cубсетевым ID, или полным IP- адресом. RIP требует много времени для восстановления связи после сбоя в маршрутизаторе (минуты). В процессе установления режима возможны циклы. Число шагов важный, но не единственный параметр маршрута, да и 15 шагов не предел для современных сетей.


Протокол OSPF (алгоритм Дикстры) Протокол OSPF (Open Shortest Pass First, RFC , RFC , алгоритмы предложены Дикстрой) является альтернативой RIP в качестве внутреннего протокола маршрутизации. OSPF представляет собой протокол состояния маршрута (в качестве метрики используется - коэффициент качества обслуживания). Каждый маршрутизатор обладает полной информацией о состоянии всех интерфейсов всех маршрутизаторов (переключателей) автономной системы. Протокол OSPF реализован в демоне маршрутизации gated, который поддерживает также RIP и внешний протокол маршрутизации BGP.









Маршрутная таблица OSPF содержит в себе: IP-адрес места назначения и маску; тип места назначения (сеть, граничный маршрутизатор и т.д.); тип функции (возможен набор маршрутизаторов для каждой из функций TOS); область (описывает область, связь с которой ведет к цели, возможно несколько записей данного типа, если области действия граничных маршрутизаторов перекрываются); тип пути (характеризует путь как внутренний, межобластной или внешний, ведущий к AS); цена маршрута до цели; очередной маршрутизатор, куда следует послать дейтограмму; объявляющий маршрутизатор (используется для межобластных обменов и для связей автономных систем друг с другом).


Преимущества OSPF: Для каждого адреса может быть несколько маршрутных таблиц, по одной на каждый вид IP-операции (TOS). Каждому интерфейсу присваивается безразмерная цена, учитывающая пропускную способность, время транспортировки сообщения. Для каждой IP- операции может быть присвоена своя цена (коэффициент качества). При существовании эквивалентных маршрутов OSFP распределяет поток равномерно по этим маршрутам. Поддерживается адресация субсетей (разные маски для разных маршрутов). При связи точка-точка не требуется IP-адрес для каждого из концов. (Экономия адресов!) Применение мультикастинга вместо широковещательных сообщений снижает загрузку не вовлеченных сегментов. Недостатки: Трудно получить информацию о предпочтительности каналов для узлов, поддерживающих другие протоколы, или со статической маршрутизацией. OSPF является лишь внутренним протоколом.


Внешний протокол BGP Протокол BGP (RFC-1267, BGP-3; RFC-1268; RFC-1467, BGP-4; , 1655) разработан компаниями IBM и CISCO. Главная цель BGP - сократить транзитный трафик. Но не всякая ЭВМ, использующая протокол BGP, является маршрутизатором, даже если она обменивается маршрутной информацией с пограничным маршрутизатором соседней автономной системы. BGP- маршрутизаторы обмениваются сообщениями об изменении маршрутов


Формат BGP-сообщений об изменениях маршрутов Поле маркер содержит 16 октетов и его содержимое может легко интерпретироваться получателем. Поле длина имеет два октета и определяет общую длину сообщения в октетах, включая заголовок. Поле тип представляет собой код разновидности сообщения и может принимать следующие значения: (еще жив)KEEPALIVE4 (внимание) NOTIFICATIO N 3 (изменить)UPDATE2 (открыть)OPEN1




Предусмотрены следующие разновидности кодов типа атрибута ORIGIN (код типа = 1) - стандартный обязательный атрибут, который определяет происхождение путевой информации. Генерируется автономной системой, которая является источником маршрутной информации. Значение атрибута в этом случае может принимать следующие значения: Incomplete - информация достижимости сетевого уровня получена каким-то иным способом. 2 EGP - информация достижимости сетевого уровня получена с помощью внешнего протокола маршрутизации; 1 IGP - информация достижимости сетевого уровня является внутренней по отношению к исходной автономной системе; 0 Описание Код атрибута


AS_sequence: уп" title="AS_PATH (код типа = 2) также является стандартным обязательным атрибутом, который составлен из совокупности сегментов пути. Каждый сегмент AS_PATH состоит из трех частей . AS_sequence: уп" class="link_thumb"> 22 AS_PATH (код типа = 2) также является стандартным обязательным атрибутом, который составлен из совокупности сегментов пути. Каждый сегмент AS_PATH состоит из трех частей. AS_sequence: упорядоченный набор маршрутов автономной системы в UPDATE-сообщении. 2 AS_set: неупорядоченный набор маршрутов в update сообщении; 1 Описание Код типа сегмента NEXT_HOP (код типа = 3) - стандартный обязательный атрибут, определяющий IP-адрес пограничного маршрутизатора, который должен рассматриваться как цель следующего шага на пути к точке назначения. MULTI_EXIT_DISC (код типа = 4) представляет собой опционный непереходной атрибут, который занимает 4 октета и является положительным целым числом. Величина этого атрибута может использоваться при выборе одного из нескольких путей к соседней автономной системе. LOCAL_PREF (код типа = 5) является опционным атрибутом, занимающим 4 октета. Он используется BGP-маршрутизатором, чтобы сообщить своим BGP-партнерам в своей собственной автономной системе степень предпочтения объявленного маршрута. ATOMIC_AGGREGATE (код типа = 6) представляет собой стандартный атрибут, который используется для информирования партнеров о выборе маршрута, обеспечивающего доступ к более широкому списку адресов. . AS_sequence: уп"> . AS_sequence: упорядоченный набор маршрутов автономной системы в UPDATE-сообщении. 2 AS_set: неупорядоченный набор маршрутов в update сообщении; 1 Описание Код типа сегмента NEXT_HOP (код типа = 3) - стандартный обязательный атрибут, определяющий IP-адрес пограничного маршрутизатора, который должен рассматриваться как цель следующего шага на пути к точке назначения. MULTI_EXIT_DISC (код типа = 4) представляет собой опционный непереходной атрибут, который занимает 4 октета и является положительным целым числом. Величина этого атрибута может использоваться при выборе одного из нескольких путей к соседней автономной системе. LOCAL_PREF (код типа = 5) является опционным атрибутом, занимающим 4 октета. Он используется BGP-маршрутизатором, чтобы сообщить своим BGP-партнерам в своей собственной автономной системе степень предпочтения объявленного маршрута. ATOMIC_AGGREGATE (код типа = 6) представляет собой стандартный атрибут, который используется для информирования партнеров о выборе маршрута, обеспечивающего доступ к более широкому списку адресов."> . AS_sequence: уп" title="AS_PATH (код типа = 2) также является стандартным обязательным атрибутом, который составлен из совокупности сегментов пути. Каждый сегмент AS_PATH состоит из трех частей. AS_sequence: уп"> title="AS_PATH (код типа = 2) также является стандартным обязательным атрибутом, который составлен из совокупности сегментов пути. Каждый сегмент AS_PATH состоит из трех частей . AS_sequence: уп">


Маршрутная база данных BGP состоит из трех частей: Содержит информацию, которую локальный BGP- маршрутизатор отобрал для рассылки соседям с помощью UPDATE-сообщений. ADJ- RIBS- OUT: 3. Содержит локальную маршрутную информацию, которую BGP-маршрутизатор отобрал, руководствуясь маршрутной политикой, из ADJ-RIBS-IN. LOC-RIB:2. Запоминает маршрутную информацию, которая получена из update-сообщений. Это список маршрутов, из которого можно выбирать. (policy information base - PIB). ADJ- RIBS- IN: 1.


Особенности BGP: BGP отличается от RIP и OSPF тем, что использует TCP в качестве транспортного протокола. ЭВМ, использующая BGP, не обязательно является маршрутизатором. Сообщения обрабатываются только после того, как они полностью получены. BGP является протоколом, ориентирующимся на вектор расстояния. BGP регулярно посылает соседям TCP-сообщения, подтверждающие, что узел жив. Если два BGP-маршрутизатора попытаются установить связь друг с другом одновременно, такая ситуация называется столкновением, одна из связей должна быть ликвидирована. При установлении связи маршрутизаторов сначала делается попытка реализовать высший из протоколов, если один из них не поддерживает эту версию, номер версии понижается.

Для автоматического построения таблиц маршрутизации в составных сетях применяются специальные служебные протоколы - так называемые протоколы маршрутизации. Они могут быть реализованы на основе разных алгоритмов, отличающихся методами построения таблиц маршрутизации, способами выбора наилучшего маршрута и другими особенностями.

В предыдущих выпусках рубрики «Первые уроки», посвященных принципам маршрутизации, предполагалось, что в таблицах маршрутизации для каждого адреса назначения указывается только следующий (ближайший) маршрутизатор, а не вся их цепочка от начального до конечного узла. В соответствии с этим подходом маршрутизация выполняется по распределенной схеме - каждый маршрутизатор отвечает за выбор только одного этапа пути, а окончательный маршрут складывается в результате работы всех маршрутизаторов, через которые проходит данный пакет. Такие алгоритмы маршрутизации называются одношаговыми.

Существует и прямо противоположный, многошаговый подход - маршрутизация от источника (Source Routing). В соответствии с ним узел-источник указывает в отправляемом в сеть пакете полный маршрут его следования через все промежуточные маршрутизаторы. Такой способ не требует построения и анализа таблиц маршрутизации. Это ускоряет прохождение пакета по сети и разгружает маршрутизаторы, но при этом большая нагрузка ложится на конечные узлы. Данная схема применяется гораздо реже, чем схема распределенной одношаговой маршрутизации.

Статические алгоритмы и простая маршрутизация

В зависимости от способа формирования таблиц маршрутизации одношаговые алгоритмы делятся на три класса:

  • алгоритмы фиксированной (или статической) маршрутизации;
  • алгоритмы простой маршрутизации;
  • алгоритмы адаптивной (или динамической) маршрутизации.

В первом случае все записи в таблице маршрутизации статические. Администратор сети сам решает, на какие маршрутизаторы надо передавать пакеты с теми или иными адресами, и заносит соответствующие записи в таблицу маршрутизации вручную (например, с помощью утилиты route ОС UNIX или Windows NT).

Таблица, как правило, создается в процессе загрузки и редактируется по мере необходимости. Такие исправления могут понадобиться, в частности, если в сети отказывает какой-либо маршрутизатор, и его функции передаются другому.

Таблицы делят на одномаршрутные, в которых для каждого адресата задан один путь, и многомаршрутные, когда предлагается несколько альтернативных путей. В случае многомаршрутных таблиц должно быть задано правило выбора одного из маршрутов. Чаще всего один путь является основным, а остальные - резервными.

Очевидно, что алгоритм фиксированной маршрутизации с его способом формирования таблиц маршрутизации вручную приемлем только в небольших сетях с простой топологией. Однако он может быть эффективно использован и на магистралях крупных сетей с простой структурой и очевидными наилучшими путями следования пакетов в подсети.

В алгоритмах простой маршрутизации таблица маршрутизации либо вовсе не используется, либо строится без участия протоколов маршрутизации. Выделяют три типа простой маршрутизации:

  • случайная маршрутизация, когда прибывший пакет посылается в первом попавшемся направлении, кроме исходного;
  • лавинная маршрутизация, когда пакет широковещательно посылается по всем возможным направлениям, кроме исходного (аналогично тому, как мосты обрабатывают кадры с неизвестным адресом);
  • маршрутизация с учетом накопленного опыта, когда выбор маршрута осуществляется по таблице, но таблица строится так же, как и в случае моста путем анализа адресных полей поступающих пакетов.
АДАПТИВНАЯ МАРШРУТИЗАЦИЯ

Наибольшее распространение получили алгоритмы адаптивной (или динамической) маршрутизации. Они обеспечивают автоматическое обновление таблиц маршрутизации после изменения конфигурации сети. Используя протоколы адаптивных алгоритмов, маршрутизаторы могут собирать информацию о топологии связей в сети и оперативно реагировать на все изменения конфигурации связей. В таблицы маршрутизации обычно заносится информация об интервале времени, в течение которого данный маршрут будет оставаться действительным. Это время называют временем жизни маршрута (Time To Live, TTL).

Адаптивные алгоритмы имеют распределенный характер, т. е. в сети нет специально выделенных маршрутизаторов для сбора и обобщения топологической информации: эта работа распределена между всеми маршрутизаторами.

В последнее время наметилась тенденция использовать так называемые серверы маршрутов: они собирают маршрутную информацию, а затем по запросам раздают ее маршрутизаторам. В этом случае последние либо освобождаются от функции создания таблицы маршрутизации, либо создают только часть таблицы. Взаимодействие маршрутизаторов с серверами маршрутов осуществляется по специальным протоколам, например Next Hop Resolution Protocol (NHRP).

Адаптивные алгоритмы маршрутизации должны отвечать нескольким важным требованиям. Прежде всего, они обязаны обеспечивать выбор если не оптимального, то хотя бы рационального маршрута. Второе условие - их непременная простота, чтобы соответствующие реализации не потребляли значительных сетевых ресурсов: в частности, они не должны порождать слишком большой объем вычислений или интенсивный служебный трафик. И, наконец, алгоритмы маршрутизации должны обладать свойством сходимости, т. е. всегда приводить к однозначному результату за приемлемое время.

Современные адаптивные протоколы обмена информацией о маршрутах, в свою очередь, делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

  • дистанционно-векторные алгоритмы (Distance Vector Algorithm, DVA);
  • алгоритмы состояния каналов (Link State Algorithm, LSA).

В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор, компонентами которого являются расстояния от данного маршрутизатора до всех известных ему сетей. Под расстоянием обычно понимается число транзитных узлов. Метрика может быть и иной, учитывающей не только число промежуточных маршрутизаторов, но и время прохождения пакетов между соседними маршрутизаторами или надежность путей.

Получив вектор от соседа, маршрутизатор увеличивает расстояние до указанных в нем сетей на длину пути до данного соседа и добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем рассылает новое значение вектора по сети. В конце концов, каждый маршрутизатор узнает информацию обо всех имеющихся в объединенной сети сетях и о расстоянии до них через соседние маршрутизаторы.

Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В крупных же они загружают линии связи интенсивным широковещательным трафиком. Изменения конфигурации отрабатываются по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором расстояний, - к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет. Наиболее распространенным протоколом на базе дистанционно-векторного алгоритма является протокол RIP.

Алгоритмы состояния каналов позволяют каждому маршрутизатору получить достаточную информацию для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, в результате процесс маршрутизации оказывается более устойчивым к изменениям конфигурации. «Широковещательная» рассылка (т. е. передача пакета всем ближайшим соседям маршрутизатора) производится здесь только при изменениях состояния связей, что в надежных сетях происходит не так часто. Вершинами графа являются как маршрутизаторы, так и объединяемые ими сети. Распространяемая по сети информация состоит из описания связей различных типов: маршрутизатор-маршрутизатор, маршрутизатор-сеть.

Для того чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами HELLO со своими ближайшими соседями. Этот служебный трафик также засоряет сеть, но не в такой степени, как, например, пакеты RIP, так как пакеты HELLO имеют намного меньший объем.

Примерами протоколов на базе алгоритма состояния связей могут служить IS-IS (Intermediate System to Intermediate System) стека OSI, OSPF (Open Shortest Path First) стека TCP/IP и протокол NLSP стека Novell.

СТРУКТУРА INTERNET

Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, появилось благодаря Internet и его предшественницы - сети ARPANET. Для того чтобы понять их назначение и особенности, полезно познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.

Internet изначально строился как сеть, объединяющая большое количество независимых систем. С самого начала в его структуре выделяли магистральную сеть (core backbone network), а подключенные к магистрали сети рассматривались как автономные системы (autonomous system). Магистраль и каждая из автономных систем имели свои собственные административное управление и протоколы маршрутизации. Необходимо подчеркнуть, что деление на автономные системы не связано прямо с делением Internet на сети и домены имен. Автономная система объединяет сети, где маршрутизация осуществляется под общим административным руководством одной организации, а домен имен - единый для компьютеров (возможно, принадлежащих разным сетям), в которых назначение уникальных символьных имен происходит под таким же руководством. Естественно, область действия автономной системы и домена имен могут в частном случае совпадать, если одна организация выполняет обе указанные функции.

Маршрутизаторы, применяемые для формирования сетей и подсетей внутри автономной системы, называются внутренними шлюзами (interior gateway), а те, с помощью которых автономные системы подключаются к магистрали сети, - внешними шлюзами (exterior gateway). Магистраль сети также является автономной системой. Все автономные системы имеют уникальный 16-разрядный номер, который присваивается централизованно соответствующим административным органом Internet.

Используемые внутри автономных систем протоколы маршрутизации называются протоколами внутренних шлюзов (Interior Gateway Protocol, IGP), а протоколы обмена маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (Exterior Gateway Protocol, EGP). Внутри магистральной сети также может функционировать любой собственный внутренний протокол IGP.

Разделение всей сети Internet на автономные системы необходимо для многоуровневой модульной организации, без чего невозможно значительно расширить любую крупную систему. Изменение протоколов маршрутизации внутри какой-либо автономной системы не должно повлиять на работу остальных автономных систем. Кроме того, деление Internet на автономные системы способствует агрегированию информации на магистральных и внешних шлюзах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы взаимных связей, чтобы выбрать наиболее рациональный маршрут. Однако если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных настолько разрастутся, что потребуется память гигантских размеров, а время принятия решений о маршрутизации станет неприемлемо большим.

Поэтому детальная топологическая информация остается внутри автономной системы, которую внешние шлюзы представляют для остальной части Internet как единое целое. Они сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество сетей IP, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.

Техника бесклассовой маршрутизации CIDR может значительно сократить объемы маршрутной информации, передаваемой между автономными системами. Так, если все сети внутри некоторой автономной системы начинаются с общего префикса, скажем 194.27.0.0/16, то внешний шлюз автономной системы должен делать объявления только об этом адресе, не сообщая отдельно о существовании внутри данной автономной системы, например сети 194.27.32.0/19 или 194.27.40.0/21, так как эти адреса агрегируются в адресе 194.27.0.0/16.

Приведенная на Рисунке 1 структура Internet с единственной магистралью была таковой достаточно долго, поэтому специально для нее был разработан протокол обмена маршрутной информацией между AS, названный EGP. Однако по мере развития сетей провайдеров услуг структура Internet стала гораздо более сложной, с произвольным характером связей между автономными системами. Поэтому протокол EGP уступил место протоколу BGP, который позволяет распознать наличие петель между автономными системами и исключить их из межсистемных маршрутов. Протоколы EGP и BGP используются провайдерами услуг Internet только на внешних шлюзах автономных систем. На маршрутизаторах корпоративных сетей работают внутренние протоколы маршрутизации, такие, как RIP и OSPF.

RIP и OSPF

Протокол RIP (Routing Information Protocol) - внутренний протокол маршрутизации дистанционно-векторного типа. Это один из наиболее ранних протоколов обмена маршрутной информацией, до сих пор чрезвычайно распространенный ввиду простоты реализации. Кроме варианта RIP для сетей TCP/IP версия RIP имеется и для сетей IPX/SPX компании Novell. Протокол RIP для IP представлен двумя версиями: первой и второй. RIP v.1 не поддерживает маски, т. е. он распространяет между маршрутизаторами только информацию о номерах сетей и расстояниях до них, а информацию о масках этих сетей не рассылает, считая, что все адреса принадлежат к стандартным классам A, B или С. Протокол RIP v.2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня.

Протокол OSPF (Open Shortest Path First, открытый протокол «первоочередного выбора кратчайшего пути») принят в 1991 г. Будучи реализацией алгоритма состояния каналов, он разрабатывался в расчете на применение в крупных гетерогенных сетях. Вычислительная сложность протокола OSPF быстро растет с увеличением размерности сети, т. е. увеличением количества сетей, маршрутизаторов и связей между ними. Для решения этой проблемы в протоколе OSPF вводится понятие «область» сети (area) (не следует путать с автономной системой Internet). Маршрутизаторы, принадлежащие некоторой области, строят граф связей только для нее, что сокращает размерность сети. Между областями информация о связях не передается, а пограничные маршрутизаторы обмениваются определенной информацией об адресах сетей, находящихся в каждой из областей, и о расстоянии от пограничного маршрутизатора до каждой сети. При передаче пакетов между областями выбирается один из пограничных маршрутизаторов области, а именно тот, у которого расстояние до нужной сети меньше. При передаче адресов в другую область маршрутизаторы OSPF агрегируют несколько адресов общим префиксом в один.

Маршрутизаторы OSPF могут принимать адресную информацию от других протоколов маршрутизации, например от протокола RIP, что полезно для работы в гетерогенных сетях. Такая адресная информация обрабатывается так же, как и внешняя информация между разными областями.

Наталья Олифер - обозреватель LAN. С ней можно связаться по адресу:

Итак, приступим.

Статей и видео о том, как настроить OSPF горы. Гораздо меньше описаний принципов работы. Вообще, тут такое дело, что OSPF можно просто настроить согласно мануалам, даже не зная про алгоритмы SPF и непонятные LSA. И всё будет работать и даже, скорее всего, прекрасно работать - на то он и рассчитан. То есть тут не как с вланами, где приходилось знать теорию вплоть до формата заголовка.
Но инженера от эникейщика отличает то, что он понимает, почему его сеть функционирует так, а не иначе, и не хуже самогo OSPF знает, какой маршрут будет выбран протоколом.
В рамках статьи, которая уже на этот момент составляет 8 000 символов, мы не сможем погрузиться в глубины теории, но рассмотрим принципиальные моменты.
Очень просто и понятно, кстати, написано про OSPF на xgu.ru или в английской википедии .
Итак, OSPFv2 работает поверх IP, а конкретно, он заточен только под IPv4 (OSPFv3 не зависит от протоколов 3-го уровня и потому может работать с IPv6).

Рассмотрим его работу на примере вот такой упрощённой сети:

Для начала надо сказать, что для того, чтобы между маршрутизаторами завязалась дружба (отношения смежности) должны выполниться следующие условия:

1) в OSPF должны быть настроены одинаковые Hello Interval на тех маршрутизаторах, что подключены друг к другу. По умолчанию это 10 секунд в Broadcast сетях, типа Ethernet. Это своего рода KeepAlive сообщения. То есть каждые 10 секунд каждый маршрутизатор отправляет Hello пакет своему соседу, чтобы сказать: “Хей, я жив”,
2) Одинаковыми должны быть и Dead Interval на них. Обычно это 4 интервала Hello - 40 секунд. Если в течение этого времени от соседа не получено Hello, то он считается недоступным и начинается ПАНИКА процесс перестроения локальной базы данных и рассылка обновлений всем соседям,
3) Интерфейсы, подключенные друг к другу, должны быть в одной подсети ,
4) OSPF позволяет снизить нагрузку на CPU маршрутизаторов, разделив Автономную Систему на зоны. Так вот номера зон тоже должны совпадать,
5) У каждого маршрутизатора, участвующего в процессе OSPF есть свой уникальный индентификатор - Router ID . Если вы о нём не позаботитесь, то маршрутизатор выберет его автоматически на основе информации о подключенных интерфейсах (выбирается высший адрес из интерфейсов, активных на момент запуска процесса OSPF). Но опять же у хорошего инженера всё под контролем, поэтому обычно создаётся Loopback интерфейс, которому присваивается адрес с маской /32 и именно он назначается Router ID. Это бывает удобно при обслуживании и траблшутинге.
6) Должен совпадать размер MTU

1) Штиль. Состояние OSPF - DOWN
В это короткое мгновение в сети ничего не происходит - все молчат.

2) Поднимается ветер: маршрутизатор рассылает Hello-пакеты на мультикастный адрес 224.0.0.5 со всех интерфейсов, где запущен OSPF. TTL таких сообщений равен одному, поэтому их получат только маршрутизаторы, находящиеся в том же сегменте сети. R1 переходит в состояние INIT .

В пакеты вкладывается следующая информация:

  • Router ID
  • Hello Interval
  • Dead Interval
  • Neighbors
  • Subnet mask
  • Area ID
  • Router Priority
  • Адреса DR и BDR маршрутизаторов
  • Пароль аутентификации
Нас интересуют пока первые четыре или точнее вообще только Router ID и Neighbors.
Сообщение Hello от маршрутизатора R1 несёт в себе его Router ID и не содержит Neighbors, потому что у него их пока нет.
После получения этого мультикастного сообщения маршрутизатор R2 добавляет R1 в свою таблицу соседей (если совпали все необходимые параметры).

И отправляет на R1 уже юникастом новое сообщение Hello, где содержится Router ID этого маршрутизатора, а в списке Neigbors перечислены все его соседи. В числе прочих соседей в этом списке есть Router ID R1, то есть R2 уже считает его соседом.

3) Дружба. Когда R1 получает это сообщение Hello от R2, он пролистывает список соседей и находит в нём свой собственный Router ID, он добавляет R2 в свой список соседей.

Теперь R1 и R2 друг у друга во взаимных соседях - это означает, что между ними установлены отношения смежности и маршрутизатор R1 переходит в состояние TWO WAY .

Общий совет по всем задачам:

Даже если Вы сразу не знаете ответа и решения, постарайтесь подумать к чему относится условие задачи:
- К каким особенностям, настройкам протокола?
- Глобальные эти настройки или привязаны к конкретному интерфейсу?
Если Вы не знаете или забыли команду, такие размышления, скорее всего, приведут Вас к правильному контексту, где Вы просто, с помощью подсказки в командной строке, можете догадаться или вспомнить как настроить то, что требуется в задании.
Постарайтесь поразмышлять в таком ключе прежде чем пойдете в гугл или на какой-то сайт в поиске команд.

На реальной сети при выборе диапазона анонсируемых подсетей нужно руководствоваться регламентом и насущными потребностями.

Прежде чем мы перейдём к тестированию резервных линков и скорости, сделаем ещё одну полезную вещь.
Если бы у нас была возможность отловить трафик на интерфейсе FE0/0.2 msk-arbat-gw1, который смотрит в сторону серверов, то мы бы увидели, что каждые 10 секунд в неизвестность улетают сообщения Hello. Ответить на Hello некому, отношения смежности устанавливать не с кем, поэтому и пытаться рассылать отсюда сообщения смысла нет.
Выключается это очень просто:

msk-arbat-gw1(config)#router OSPF 1
msk-arbat-gw1(config-router)#passive-interface fastEthernet 0/0.2

Такую команду нужно дать для всех интерфейсов, на которых точно нет соседей OSPF (в том числе в сторону интернета).
В итоге картина у вас будет такая:


*Не представляю, как вы до сих пор не запутались*

Кроме того, эта команда повышает безопасность - никто из этой сети не прикинется маршрутизатором и не будет пытаться поломать нас полностью.

Теперь займёмся самым интересным - тестированием.
Ничего сложного нет в настройке OSPF на всех маршрутизаторах в Сибирском кольце - сделаете сами.
И после этого картина должна быть следующей:

msk-arbat-gw1#sh ip OSPF neighbor


172.16.255.32 1 FULL/DR 00:00:31 172.16.2.2 FastEthernet0/1.4
172.16.255.48 1 FULL/DR 00:00:31 172.16.2.18 FastEthernet0/1.5
172.16.255.80 1 FULL/BDR 00:00:36 172.16.2.130 FastEthernet0/1.8
172.16.255.112 1 FULL/BDR 00:00:37 172.16.2.197 FastEthernet1/0.911


Питер, Кемерово, Красноярск и Владивосток - непосредственно подключенные.
msk-arbat-gw1#sh ip route

172.16.0.0/16 is variably subnetted, 25 subnets, 6 masks



S 172.16.2.4/30 via 172.16.2.2



O 172.16.2.160/30 via 172.16.2.130, 00:05:53, FastEthernet0/1.8
O 172.16.2.192/30 via 172.16.2.197, 00:04:18, FastEthernet1/0.911





S 172.16.16.0/21 via 172.16.2.2
S 172.16.24.0/22 via 172.16.2.18
O 172.16.24.0/24 via 172.16.2.18, 00:24:03, FastEthernet0/1.5
O 172.16.128.0/24 via 172.16.2.130, 00:07:18, FastEthernet0/1.8
O 172.16.129.0/26 via 172.16.2.130, 00:07:18, FastEthernet0/1.8

O 172.16.255.32/32 via 172.16.2.2, 00:24:03, FastEthernet0/1.4
O 172.16.255.48/32 via 172.16.2.18, 00:24:03, FastEthernet0/1.5
O 172.16.255.80/32 via 172.16.2.130, 00:07:18, FastEthernet0/1.8
O 172.16.255.96/32 via 172.16.2.130, 00:04:18, FastEthernet0/1.8
via 172.16.2.197, 00:04:18, FastEthernet1/0.911
O 172.16.255.112/32 via 172.16.2.197, 00:04:28, FastEthernet1/0.911




Все обо всех всё знают.
Каким маршрутом трафик доставляется из Москвы в Красноярск? Из таблицы видно, что krs-stolbi-gw1 подключен напрямую и это же видно из трассировки:



1 172.16.2.130 35 msec 8 msec 5 msec


Теперь рвём интерфейс между Москвой и Красноярском и смотрим, через сколько линк восстановится.
Не проходит и 5 секунд, как все маршрутизаторы узнали о происшествии и пересчитали свои таблицы маршрутизации:
msk-arbat-gw1(config-subif)#do sh ip ro 172.16.128.0

Known via «OSPF 1», distance 110, metric 4, type intra area
Last update from 172.16.2.197 on FastEthernet1/0.911, 00:00:53 ago
Routing Descriptor Blocks:
* 172.16.2.197, from 172.16.255.80, 00:00:53 ago, via FastEthernet1/0.911
Route metric is 4, traffic share count is 1

Vld-gw1#sh ip route 172.16.128.0
Routing entry for 172.16.128.0/24
Known via «OSPF 1», distance 110, metric 3, type intra area
Last update from 172.16.2.193 on FastEthernet1/0, 00:01:57 ago
Routing Descriptor Blocks:
* 172.16.2.193, from 172.16.255.80, 00:01:57 ago, via FastEthernet1/0
Route metric is 3, traffic share count is 1

Msk-arbat-gw1#traceroute 172.16.128.1
Type escape sequence to abort.
Tracing the route to 172.16.128.1

1 172.16.2.197 4 msec 10 msec 10 msec
2 172.16.2.193 8 msec 11 msec 15 msec
3 172.16.2.161 15 msec 13 msec 6 msec

То есть теперь Красноярска трафик достигает таким путём:

Как только вы поднимете линк, маршрутизаторы снова вступают в связь, обмениваются своими базами, пересчитываются кратчайшие пути и заносятся в таблицу маршрутизации.
На видео всё это более наглядно. Рекомендую ознакомиться .

Как любой хороший протокол, OSPF поддерживает аутентификацию - два соседа перед установлением соотношений соседства могут проверять подлинность полученных OSPF-сообщений. Оставляем на самостоятельное изучение - довольно просто.

EIGRP

Теперь займёмся другим очень важным протоколом

Итак, чем хорош EIGRP?
- прост в конфигурации
- быстрое переключение на заранее просчитанный запасной маршрут
- требует меньше ресурсов роутера (по сравнению с OSPF)
- суммирование маршрутов на любом роутере (в OSPF только на ABR\ASBR)
- балансировка трафика на неравноценных маршрутах (OSPF только на равноценных)

Мы решили перевести одну из записей блога Ивана Пепельняка, в которой разбирается ряд популярных мифов про EIGRP:
- “EIGRP это гибридный протокол маршрутизации”. Если я правильно помню, это началось с первой презентации EIGRP много лет назад и обычно понимается как «EIGRP взял лучшее от link-state и distance-vector протоколов». Это совершенно не так. У EIGRP нет никаких отличительных особенностей link-state. Правильно будет говорить «EIGRP это продвинутый distance-vector- протокол маршрутизации».

- “EIGRP это distance-vector протокол”. Неплохо, но не до конца верно тоже. EIGRP отличается от других DV способом, которым обрабатывает потерянные маршруты (или маршруты с возрастающей метрикой). Все остальные протоколы пассивно ждут обновления информации от соседа (некоторые, например, RIP, даже блокируют маршрут для предотвращения петель маршрутизации), в то время как EIGRP ведет себя активнее и запрашивает информацию сам.

- “EIGRP сложен во внедрении и обслуживании”. Неправда. В свое время, EIGRP в больших сетях с низкоскоростными линками было сложновато правильно внедрить, но ровно до того момента, как были введены stub routers. С ними (а также несколькими исправлениями работы DUAL-алгоритма), он не чуть не хуже, чем OSPF.

- “Как и LS протоколы, EIGRP хранит таблицу топологии маршрутов, которыми обменивается”. Просто удивительно, насколько это неверно. EIGRP не имеет вообще никакого понятия о том, что находится дальше ближайших соседей, в то время как LS протоколы точно знают топологию всей области, к которой они подключены.

- “EIGRP это DV протокол, который действует, как LS”. Неплохая попытка, но по-прежнему, абсолютно неверно. LS протоколы строят таблицу маршрутизации, проходя через следующие шаги:
- каждый маршрутизатор описывает сеть, исходя из информации, доступной ему локально (его линки, подсети, в которых он находится, соседи, которых он видит) посредством пакета (или нескольких), называемого LSA (в OSPF) или LSP (IS-IS)
- LSA распространяются по сети. Каждый маршрутизатор должен получить каждую LSA, созданную в его сети. Информация, полученная из LSA, заносится в таблицу топологии.
- каждый маршрутизатор независимо анализирует свою таблицу топологии и запускает SPF алгоритм для подсчета лучших маршрутов к каждому из других маршрутизаторов
Поведение EIGRP даже близко не напоминает эти шаги, поэтому непонятно, с какой стати он «действует, как LS»

Единственное, что делает EIGRP - это хранит информацию, полученную от соседа (RIP сразу же забывает то, что не может быть использовано в данный момент). В этом смысле, он похож на BGP, который тоже хранит все в таблице BGP и выбирает лучший маршрут оттуда. Таблица топологии (содержащая всю информацию, полученную от соседей), дает EIGRP преимущество перед RIP – она может содержать информацию о запасном (не используемом в данный момент) маршруте.

Теперь чуть ближе к теории работы:

Каждый процесс EIGRP обслуживает 3 таблицы:
- Таблицу соседей (neighbor table), в которой содержится информация о “соседях”, т.е. других маршрутизаторах, непосредственно подключенных к текущему и участвующих в обмене маршрутами. Можно посмотреть с помощью команды show ip eigrp neighbors
- Таблицу топологии сети (topology table), в которой содержится информация о маршрутах, полученная от соседей. Смотрим командой show ip eigrp topology
- Таблицу маршрутизации (routing table), на основе которой роутер принимает решения о перенаправлении пакетов. Просмотр через show ip route

Метрика.
Для оценки качества определенного маршрута, в протоколах маршрутизации используется некое число, отражающее различные его характеристики или совокупность характеристик- метрика. Характеристики, принимаемые в расчет, могут быть разными- начиная от количества роутеров на данном маршруте и заканчивая средним арифметическим загрузки всех интерфейсов по ходу маршрута. Что касается метрики EIGRP, процитируем Jeremy Cioara: “у меня создалось впечатление, что создатели EIGRP, окинув критическим взглядом свое творение, решили, что все слишком просто и хорошо работает. И тогда они придумали формулу метрики, что бы все сказали “ВАУ, это действительно сложно и профессионально выглядит”. Узрите же полную формулу подсчета метрики EIGRP: (K1 * bw + (K2 * bw) / (256 - load) + K3 * delay) * (K5 / (reliability + K4)), в которой:
- bw это не просто пропускная способность, а (10000000/самая маленькая пропускная способность по дороге маршрута в килобитах) * 256
- delay это не просто задержка, а сумма всех задержек по дороге в десятках микросекунд * 256 (delay в командах show interface, show ip eigrp topology и прочих показывается в микросекундах!)
- K1-K5 это коэффициенты, которые служат для того, чтобы в формулу “включился” тот или иной параметр.

Страшно? было бы, если бы все это работало, как написано. На деле же из всех 4 возможных слагаемых формулы, по умолчанию используются только два: bw и delay (коэффициенты K1 и K3=1, остальные нулю), что сильно ее упрощает - мы просто складываем эти два числа (не забывая при этом, что они все равно считаются по своим формулам). Важно помнить следующее: метрика считается по худшему показателю пропускной способности по всей длине маршрута .

Интересная штука получилась с MTU: довольно часто можно встретить сведения о том, что MTU имеет отношение к метрике EIGRP. И действительно, значения MTU передаются при обмене маршрутами. Но, как мы можем видеть из полной формулы, никакого упоминания об MTU там нет. Дело в том, что этот показатель принимается в расчет в довольно специфических случаях: например, если роутер должен отбросить один из равнозначных по остальным характеристикам маршрутов, он выберет тот, у которого меньший MTU. Хотя, не все так просто (см. комментарии).

Определимся с терминами, применяемыми внутри EIGRP. Каждый маршрут в EIGRP характеризуется двумя числами: Feasible Distance и Advertised Distance (вместо Advertised Distance иногда можно встретить Reported Distance, это одно и то же). Каждое из этих чисел представляет собой метрику, или стоимость (чем больше-тем хуже) данного маршрута с разных точек измерения: FD это “от меня до места назначения”, а AD- “от соседа, который мне рассказал об этом маршруте, до места назначения”. Ответ на закономерный вопрос “Зачем нам надо знать стоимость от соседа, если она и так включена в FD?”- чуть ниже (пока можете остановиться и поломать голову сами, если хотите).

У каждой подсети, о которой знает EIGRP, на каждом роутере существует Successor- роутер из числа соседей, через который идет лучший (с меньшей метрикой), по мнению протокола, маршрут к этой подсети. Кроме того, у подсети может также существовать один или несколько запасных маршрутов (роутер-сосед, через которого идет такой маршрут, называется Feasible Successor). EIGRP- единственный протокол маршрутизации, запоминающий запасные маршруты (в OSPF они есть, но содержатся, так сказать, в “сыром виде” в таблице топологии- их еще надо обработать алгоритмом SPF), что дает ему плюс в быстродействии: как только протокол определяет, что основной маршрут (через successor) недоступен, он сразу переключается на запасной. Для того, чтобы роутер мог стать feasible successor для маршрута, его AD должно быть меньше FD successor’а этого маршрута (вот зачем нам нужно знать AD). Это правило применяется для того, чтобы избежать колец маршрутизации.

Предыдущий абзац взорвал мозг? Материал трудный, поэтому еще раз на примере. У нас есть вот такая сеть:

С точки зрения R1, R2 является Successor’ом для подсети 192.168.2.0/24. Чтобы стать FS для этой подсети, R4 требуется, чтобы его AD была меньше FD для этого маршрута. FD у нас ((10000000/1544)*256)+(2100*256) =2195456, AD у R4 (с его точки зрения это FD, т.е. сколько ему стоит добраться до этой сети) = ((10000000/100000)*256)+(100*256)=51200. Все сходится, AD у R4 меньше, чем FD маршрута, он становится FS. *тут мозг такой и говорит: “БДЫЩЬ”*. Теперь смотрим на R3- он анонсирует свою сеть 192.168.1.0/24 соседу R1, который, в свою очередь, рассказывает о ней своим соседям R2 и R4. R4 не в курсе, что R2 знает об этой подсети, и решает ему рассказать. R2 передает информацию о том, что он имеет доступ через R4 к подсети 192.168.1.0/24 дальше, на R1. R1 строго смотрит на FD маршрута и AD, которой хвастается R2 (которая, как легко понять по схеме, будет явно больше FD, так как включает и его тоже) и прогоняет его, чтобы не лез со всякими глупостями. Такая ситуация довольно маловероятна, но может иметь место при определенном стечении обстоятельств, например, при отключении механизма “расщепления горизонта” (split-horizon). А теперь к более вероятной ситуации: представим, что R4 подключен к сети 192.168.2.0/24 не через FastEthernet, а через модем на 56k (задержка для dialup составляет 20000 usec), соответственно, добраться ему стоит ((10000000/56)*256)+(2000*256)= 46226176. Это больше, чем FD для этого маршрута, поэтому R4 не станет Feasible Successor’ом. Но это не значит, что EIGRP вообще не будет использовать данный маршрут. Просто переключение на него займет больше времени (подробнее об этом дальше).

соседство
Роутеры не разговаривают о маршрутах с кем попало - прежде чем начать обмениваться информацией, они должны установить отношения соседства. После включения процесса командой router eigrp с указанием номера автономной системы, мы, командой network говорим, какие интерфейсы будут участвовать и одновременно, информацию о каких сетях мы желаем распространять. Незамедлительно, через эти интерфейсы начинают рассылаться hello-пакеты на мультикаст- адрес 224.0.0.10 (по умолчанию каждые 5 секунд для ethernet). Все маршрутизаторы с включенным EIGRP получают эти пакеты, далее каждый маршрутизатор-получатель делает следующее:
- сверяет адрес отправителя hello-пакета, с адресом интерфейса, из которого получен пакет, и удостоверяется, что они из одной подсети
- сверяет значения полученных из пакета K-коэффициентов (проще говоря, какие переменные используются в подсчете метрики) со своими. Понятно, что если они различаются, то метрики для маршрутов будут считаться по разным правилам, что недопустимо
- проверяет номер автономной системы
- опционально: если настроена аутентификация, проверяет соответствие ее типа и ключей.

Если получателя все устраивает, он добавляет отправителя в список своих соседей, и посылает ему (уже юникастом) update-пакет, в котором содержится список всех известных ему маршрутов (aka full-update). Отправитель, получив такой пакет, в свою очередь, делает то же самое. Для обмена маршрутами EIGRP использует Reliable Transport Protocol (RTP, не путать с Real-time Transport Protocol, который используется в ip-телефонии), который подразумевает подтверждение о доставке, поэтому каждый из роутеров, получив update- пакет, отвечает ack -пакетом (сокращение от acknowledgement- подтверждение). Итак, отношение соседства установлены, роутеры узнали друг у друга исчерпывающую информацию о маршрутах, что дальше? Дальше они будут продолжать посылать мультикаст hello-пакеты в подтверждение того, что они на связи, а в случае изменения топологии- update-пакеты, содержащие сведения только об изменениях (partial update).

Теперь вернемся к предыдущей схеме с модемом.

R2 по каким-то причинам потерял связь с 192.168.2.0/24. До этой подсети у него нет запасных маршрутов (т.е. отсутствует FS). Как всякий ответственный роутер с EIGRP, он хочет восстановить связь. Для этого он начинает рассылать специальные сообщения (query- пакеты) всем своим соседям, которые, в свою очередь, не находя нужного маршрута у себя, расспрашивают всех своих соседей, и так далее. Когда волна запросов докатывается до R4, он говорит “погодите-ка, у меня есть маршрут к этой подсети! Плохонький, но хоть что-то. Все про него забыли, а я-то помню”. Все это он упаковывает в reply-пакет и отправляет соседу, от которого получил запрос (query), и дальше по цепочке. Понятное дело, это все занимает больше времени, чем просто переключение на Feasible Successor, но, в итоге, мы получаем связь с подсетью.

А сейчас опасный момент: может, вы уже обратили внимание и насторожились, прочитав момент про эту веерную рассылку. Падение одного интерфейса вызывает нечто похожее на широковещательный шторм в сети (не в таких масштабах, конечно, но все-таки), причем чем больше в ней роутеров, тем больше ресурсов потратится на все эти запросы-ответы. Но это еще пол-беды. Возможна ситуация и похуже: представим, что роутеры, изображенные на картинке- это только часть большой и распределенной сети, т.е. некоторые могут находится за много тысяч километров от нашего R2, на плохих каналах и прочее. Так вот, беда в том, что, послав query соседу, роутер обязан дождаться от него reply. Неважно, что в ответе- но он должен прийти. Даже если роутер уже получил положительный ответ, как в нашем случае, он не может поставить этот маршрут в работу, пока не дождется ответа на все свои запросы. А запросы-то, может, еще где-нибудь на Аляске бродят. Такое состояние маршрута называется stuck-in-active. Тут нам нужно познакомится с терминами, отражающими состояние маршрута в EIGRP: active\passive route. Обычно они вводят в заблуждение. Здравый смысл подсказывает, что active значит маршрут “активен”, включен, работает. Однако тут все наоборот: passive это “все хорошо”, а состояние active означает, что данная подсеть недоступна, и маршрутизатор находится в активном поиске другого маршрута, рассылая query и ожидая reply. Так вот, состояние stuck-in-active (застрял в активном состоянии) может продолжатся до 3 минут! По истечение этого срока, роутер обрывает отношения соседства с тем соседом, от которого он не может дождаться ответа, и может использовать новый маршрут через R4.

История, леденящая кровь сетевого инженера. 3 минуты даунтайма это не шутки. Как мы можем избежать инфаркта этой ситуации? Выхода два: суммирование маршрутов и так называемая stub-конфигурация.

Вообще говоря, есть еще один выход, и он называется фильтрация маршрутов (route filtering). Но это настолько объемная тема, что впроу отдельную статью под нее писать, а у нас и так уже пол-книги получилось в этот раз. Поэтому на ваше усмотрение.

Как мы уже упоминали, в EIGRP суммирование маршрутов можно проводить на любом роутере. Для иллюстрации, представим, что к нашему многострадальному R2 подключены подсети от 192.168.0.0/24 до 192.168.7.0/24, что очень удобненько суммируется в 192.168.0.0/21 (вспоминаем binary math). Роутер анонсирует этот суммарный маршрут, и все остальные знают: если адрес назначения начинается на 192.168.0-7, то это к нему. Что будет происходить, если одна из подсетей пропадет? Роутер будет рассылать query-пакеты с адресом этой сети (конкретным, например, 192.168.5.0/24), но соседи, вместо того, чтобы уже от своего имени продолжить порочную рассылку, будут сразу в ответ слать отрезвляющие реплаи, мол, это твоя подсеть, ты и разбирайся.

Второй вариант- stub- конфигурация. Образно говоря, stub означает “конец пути”, “тупик” в EIGRP, т.е., чтобы попасть в какую-то подсеть, не подключенную напрямую к такому роутеру, придется идти назад. Роутер, сконфигурированный, как stub, не будет пересылать трафик между подсетями, которые ему стали известны от EIGRP (проще говоря, которые в show ip route помечены буквой D). Кроме того, его соседи не будут отправлять ему query-пакеты. Самый распространенный случай применения- hub-and-spoke топологии, особенно с избыточными линками. Возьмем такую сеть: слева- филиалы, справа- основной сайт, главный офис и т.п. Для отказоустойчивости избыточные линки. Запущен EIGRP с дефолтными настройками.

А теперь “внимание, вопрос”: что будет, если R1 потеряет связь с R4, а R5 потеряет LAN? Трафик из подсети R1 в подсеть главного офиса будет идти по маршруту R1->R5->R2(или R3)->R4. Будет это эффективно? Нет. Будет страдать не только подсеть за R1, но и подсеть за R2 (или R3), из-за увеличения объемов трафика и его последствий. Вот для таких-то ситуаций и придуман stub. За роутерами в филиалах нет других роутеров, которые вели бы в другие подсети, это “конец дороги”, дальше только назад. Поэтому мы с легким сердцем можем сконфигурировать их как stub’ы, что, во-первых, избавит нас от проблемы с “кривым маршрутом”, изложенной чуть выше, а во-вторых, от флуда query-пакетов в случае потери маршрута.

Существуют различные режимы работы stub-роутера, задаются они командой eigrp stub:

R1(config)#router eigrp 1
R1(config-router)#eigrp stub?
connected Do advertise connected routes
leak-map Allow dynamic prefixes based on the leak-map
receive-only Set IP-EIGRP as receive only neighbor
redistributed Do advertise redistributed routes
static Do advertise static routes
summary Do advertise summary routes

По умолчанию, если просто дать команду eigrp stub, включаются режимы сonnected и summary. Интерес представляет режим receive-only, в котором роутер не анонсирует никаких сетей, только слушает, что ему говорят соседи (в RIP есть команда passive interface, которая делает то же самое, но в EIGRP она полностью отключает протокол на выбранном интерфейсе, что не позволяет установить соседство).

Важные моменты в теории EIGRP, не попавшие в статью:

  • В EIGRP можно настроить аутентификацию соседей
  • Концепция graceful shutdown
Практика EIGRP

“Лифт ми Ап” купили фабрику в Калининграде. Там производят мозги лифтов: микросхемы, ПО. Фабрика очень крупная - три точки по городу - три маршрутизатора соединены в кольцо.

Но вот незадача - на них уже запущен EIGRP в качестве протокола динамической маршрутизации. Причём адресация конечных узлов совсем из другой подсети - 10.0.0.0/8. Все другие параметры (линковые адреса, адреса лупбэк интерфейсов) мы поменяли, но несколько тысяч адресов локальной сети с серверами, принтерами, точками доступа - работа не на пару часов - отложили на потом, а в IP-плане зарезервировали на будущее для Калининграда подсеть 172.16.32.0/20.

Сейчас у нас используются такие сети:


Как настраивается это чудо? Незамысловато, на первый взгляд:

router eigrp 1
network 172.16.0.0 0.0.255.255
network 10.0.0.0

В EIGRP обратную маску можно задавать, указывая тем самым более узкие рамки, либо не задавать, тогда будет выбрана стандартная маска для этого класса (16 для класса B - 172.16.0.0 и 8 для класса 8 - 10.0.0.0)

Такие команды даются на всех маршрутизаторах Автономной Системы. АС определяется цифрой в команде router eigrp, то есть в нашем случае имеем АС №1. Эта цифра должна быть одинаковой на всех маршрутизаторах (в отличии от OSPF).

Но есть в EIGRP серьёзный подвох: по умолчанию включено автоматическое суммирование маршрутов в классовом виде (в версиях IOS до 15).
Сравним таблицы маршрутизации на трёх калининградских маршрутизаторах:

Сеть 10.0.0.1/24 подключена у нас к klgr-center-gw1 и он о ней знает:

klgr-center-gw1:
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
D 10.0.0.0/8 is a summary, 00:35:23, Null0
C 10.0.0.0/24 is directly connected, FastEthernet1/0

Но не знает о 10.0.1.0/24 и 10.0.2.0/24/

Klgr-balt-gw1 знает о своих двух сетях 10.0.1.0/24 и 10.0.2.0/24, но вот сеть 10.0.0.0/24 он куда-то спрятал.

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
D 10.0.0.0/8 is a summary, 00:42:05, Null0
C 10.0.1.0/24 is directly connected, FastEthernet1/1.2
C 10.0.2.0/24 is directly connected, FastEthernet1/1.3

Они оба создали маршрут 10.0.0.0/8 с адресом next hop Null0.

А вот klgr-center-gw2 знает, что подсети 10.0.0.0/8 находятся за обоими его WAN интерфейсами.

D 10.0.0.0/8 via 172.16.2.41, 00:42:49, FastEthernet0/1
via 172.16.2.45, 00:38:05, FastEthernet0/0

Что-то очень странное творится.
Но, если вы проверите конфигурацию этого маршрутизатора, то, вероятно, заметите:
router eigrp 1
network 172.16.0.0
network 10.0.0.0
auto-summary

Во всём виновато автоматическое суммирование. Это самое большое зло EIGRP. Рассмотрим более подробно, что происходит. klgr-center-gw1 и klgr-balt-gw1 имеют подсети из 10.0.0.0/8, они их суммируют по умолчанию, когда передают соседям.
То есть, например, msk-balt-gw1 передаёт не две сети 10.0.1.0/24 и 10.0.2.0/24, а одну обобщённую: 10.0.0.0/8. То есть его сосед будет думать, что за msk-balt-gw1 находится вся эта сеть.
Но, что произойдёт, если вдруг на balt-gw1 попадёт пакет с адресатом 10.0.50.243, о котором тот ничего не знает? На этот случай и создаётся так называетмый Blackhole-маршрут:
10.0.0.0/8 is a summary, 00:42:05, Null0
Полученный пакет будет выброшен в эту чёрную дыру. Это делается во избежание петель маршрутизации.
Так вот оба эти маршрутизатора создали свои blackhole-маршруты и игнорируют чужие анонсы. Реально на такой сети эти три девайса друг друга так и не смогут пинговать, пока… пока вы не отключите auto-summary.

Первое, что вы должны сделать при настройке EIGRP:

router eigrp 1
no auto-summary

На всех устройствах. И всем будет хорошо:

Klgr-center-gw1:


C 10.0.0.0 is directly connected, FastEthernet1/0
D 10.0.1.0 via 172.16.2.37, 00:03:11, FastEthernet0/0
D 10.0.2.0 via 172.16.2.37, 00:03:11, FastEthernet0/0

klgr-balt-gw1
10.0.0.0/24 is subnetted, 3 subnets
D 10.0.0.0 via 172.16.2.38, 00:08:16, FastEthernet0/1
C 10.0.1.0 is directly connected, FastEthernet1/1.2
C 10.0.2.0 is directly connected, FastEthernet1/1.3

klgr-center-gw2:
10.0.0.0/24 is subnetted, 3 subnets
D 10.0.0.0 via 172.16.2.45, 00:11:50, FastEthernet0/0
D 10.0.1.0 via 172.16.2.41, 00:11:48, FastEthernet0/1
D 10.0.2.0 via 172.16.2.41, 00:11:48, FastEthernet0/1

Настройка передачи маршрутов между различными протоколами

Наша задача организовать передачу маршрутов между этими протоколами: из OSPF в EIGRP и наоборот, чтобы все знали маршрут до любой подсети.
Это называется редистрибуцией (перераспределением) маршрутов.

Для её осуществления нам нужна хотя бы одна точка стыка, где будут запущены одновременно два протокола. Это может быть msk-arbat-gw1 или klgr-balt-gw1. Выберем второй.

Из EIGRP в OSPF:

klgr-gw1(config)#router ospf 1
klgr-gw1(config-router)#redistribute eigrp 1 subnets

Смотрим маршруты на msk-arbat-gw1:
msk-arbat-gw1#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 198.51.100.1 to network 0.0.0.0

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
O E2 10.0.0.0/8 via 172.16.2.34, 00:25:11, FastEthernet0/1.7
O E2 10.0.1.0/24 via 172.16.2.34, 00:25:11, FastEthernet0/1.7
O E2 10.0.2.0/24 via 172.16.2.34, 00:24:50, FastEthernet0/1.7
172.16.0.0/16 is variably subnetted, 30 subnets, 5 masks
O E2 172.16.0.0/16 via 172.16.2.34, 00:25:11, FastEthernet0/1.7
C 172.16.0.0/24 is directly connected, FastEthernet0/0.3
C 172.16.1.0/24 is directly connected, FastEthernet0/0.2
C 172.16.2.0/30 is directly connected, FastEthernet0/1.4
C 172.16.2.16/30 is directly connected, FastEthernet0/1.5
C 172.16.2.32/30 is directly connected, FastEthernet0/1.7
O E2 172.16.2.36/30 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
O E2 172.16.2.40/30 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
O E2 172.16.2.44/30 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
C 172.16.2.128/30 is directly connected, FastEthernet0/1.8
O 172.16.2.160/30 via 172.16.2.130, 01:00:55, FastEthernet0/1.8
O 172.16.2.192/30 via 172.16.2.197, 00:13:21, FastEthernet1/0.911
C 172.16.2.196/30 is directly connected, FastEthernet1/0.911
C 172.16.3.0/24 is directly connected, FastEthernet0/0.101
C 172.16.4.0/24 is directly connected, FastEthernet0/0.102
C 172.16.5.0/24 is directly connected, FastEthernet0/0.103
C 172.16.6.0/24 is directly connected, FastEthernet0/0.104
O 172.16.24.0/24 via 172.16.2.18, 01:00:55, FastEthernet0/1.5
O 172.16.128.0/24 via 172.16.2.130, 01:00:55, FastEthernet0/1.8
O 172.16.129.0/26 via 172.16.2.130, 01:00:55, FastEthernet0/1.8
O 172.16.144.0/24 via 172.16.2.130, 00:13:21, FastEthernet0/1.8

O 172.16.160.0/24 via 172.16.2.197, 00:13:31, FastEthernet1/0.911
C 172.16.255.1/32 is directly connected, Loopback0
O 172.16.255.48/32 via 172.16.2.18, 01:00:55, FastEthernet0/1.5
O E2 172.16.255.64/32 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
O E2 172.16.255.65/32 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
O E2 172.16.255.66/32 via 172.16.2.34, 01:00:55, FastEthernet0/1.7
O 172.16.255.80/32 via 172.16.2.130, 01:00:55, FastEthernet0/1.8
O 172.16.255.96/32 via 172.16.2.130, 00:13:21, FastEthernet0/1.8
via 172.16.2.197, 00:13:21, FastEthernet1/0.911
O 172.16.255.112/32 via 172.16.2.197, 00:13:31, FastEthernet1/0.911
198.51.100.0/28 is subnetted, 1 subnets
C 198.51.100.0 is directly connected, FastEthernet0/1.6
S* 0.0.0.0/0 via 198.51.100.1

Вот те, что с меткой Е2 - новые импортированные маршруты. Е2 - означает, что это внешние маршруты 2-го типа (), то есть они были введены в процесс OSPF извне

Теперь из OSPF в EIGRP. Это чуточку сложнее:

klgr-gw1(config)#router eigrp 1
klgr-gw1(config-router)#redistribute ospf 1 metric 100000 20 255 1 1500

Без указания метрики (вот этого длинного набора цифр) команда выполнится, но редистрибуции не произойдёт.

Импортированные маршруты получают метку EX в таблице маршрутизации и административную дистанцию 170, вместо 90 для внутренних:

klgr-gw2#sh ip route

Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 30 subnets, 4 masks
D EX 172.16.0.0/24 [170 /33280] via 172.16.2.37, 00:00:07, FastEthernet0/0
D EX 172.16.1.0/24 via 172.16.2.37, 00:00:07, FastEthernet0/0
D EX 172.16.2.0/30 via 172.16.2.37, 00:00:07, FastEthernet0/0
D EX 172.16.2.4/30 via 172.16.2.37, 00:00:07, FastEthernet0/0
D EX 172.16.2.16/30 via 172.16.2.37, 00:00:07, FastEthernet0/0
D 172.16.2.32/30 [90 /30720] via 172.16.2.37, 00:38:59, FastEthernet0/0
C 172.16.2.36/30 is directly connected, FastEthernet0/0
D 172.16.2.40/30 via 172.16.2.37, 00:38:59, FastEthernet0/0
via 172.16.2.46, 00:38:59, FastEthernet0/1
….

Вот так, казалось бы незамысловато это делается, но простота поверхностная - редистрибуция таит в себе много тонких и неприятных , когда добавляется хотя бы один избыточный линк между двумя разными доменами.
Универсальный совет - старайтесь избегать редистрибуции, если это возможно. Тут работает главное жизненное правило - чем проще, тем лучше.

Маршрут по умолчанию

Теперь самое время проверить доступ в интернет. Из Москвы он прекрасно себе работает, а вот если проверить, например из Петербурга (помним, что мы удалили все статические маршруты):
PC>ping linkmeup.ru

Pinging 192.0.2.2 with 32 bytes of data:


Reply from 172.16.2.5: Destination host unreachable.
Reply from 172.16.2.5: Destination host unreachable.
Reply from 172.16.2.5: Destination host unreachable.

Ping statistics for 192.0.2.2:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),


Это связано с тем, что ни spb-ozerki-gw1, ни spb-vsl-gw1, ни кто-либо другой в нашей сети не знает о маршруте по умолчанию, кроме msk-arbat-gw1, на котором он настроен статически.
Чтобы исправить эту ситуацию, нам достаточно дать одну команду в Москве:
msk-arbat-gw1(config)#router ospf 1
msk-arbat-gw1(config-router)#default-information originate

После этого по сети лавинно распространяется информация о том, где находится шлюз последней надежды.

Интернет теперь доступен:

PC>tracert linkmeup.ru

Tracing route to 192.0.2.2 over a maximum of 30 hops:

1 3 ms 3 ms 3 ms 172.16.17.1
2 4 ms 5 ms 12 ms 172.16.2.5
3 14 ms 20 ms 9 ms 172.16.2.1
4 17 ms 17 ms 19 ms 198.51.100.1
5 22 ms 23 ms 19 ms 192.0.2.2

Полезные команды для траблшутинга

1) Список соседей и состояние связи с ними вызывается командой show ip ospf neighbor

msk-arbat-gw1:

Neighbor ID Pri State Dead Time Address Interface
172.16.255.32 1 FULL/DROTHER 00:00:33 172.16.2.2 FastEthernet0/1.4
172.16.255.48 1 FULL/DR 00:00:34 172.16.2.18 FastEthernet0/1.5
172.16.255.64 1 FULL/DR 00:00:33 172.16.2.34 FastEthernet0/1.7
172.16.255.80 1 FULL/DR 00:00:33 172.16.2.130 FastEthernet0/1.8
172.16.255.112 1 FULL/DR 00:00:33 172.16.2.197 FastEthernet1/0.911


2) Или для EIGRP: show ip eigrp neighbors
IP-EIGRP neighbors for process 1
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.2.38 Fa0/1 12 00:04:51 40 1000 0 54
1 172.16.2.42 Fa0/0 13 00:04:51 40 1000 0 58

3) С помощью команды show ip protocols можно посмотреть информацию о запущенных протоколах динамической маршрутизации и их взаимосвязи.

Klgr-balt-gw1:

Routing Protocol is «EIGRP 1 »

Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: EIGRP 1, OSPF 1
Automatic network summarization is in effect
Automatic address summarization:
Maximum path: 4
Routing for Networks:
172.16.0.0

172.16.2.42 90 4
172.16.2.38 90 4
Distance: internal 90 external 170

Routing Protocol is «OSPF 1»
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 172.16.255.64
It is an autonomous system boundary router
Redistributing External Routes from,
EIGRP 1
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.2.32 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.255.64 110 00:00:23
Distance: (default is 110)


4) Для отладки и понимания работы протоколов будет полезно воспользоваться следующими командами:
debug ip OSPF events
debug ip OSPF adj
debug EIGRP packets

Попробуйте подёргать разные интерфейсы и посмотреть, что происходит в дебаге, какие сообщения летят.

Задача №7
На последок комплесная задачка.
На последнем совещании Лифт ми Ап было решено, что сеть Калининграда необходимо также переводить на OSPF.
Переход должен быть совершен без разрывов связи. Было решено, что лучшим вариантом будет параллельно с EIGRP поднять OSPF на трёх маршрутизаторах Калининграда и после того, как будет проверено, что вся информация о маршрутах Калининграда распространилась по остальной сети и наоборот, отключить EIGRP. за логотип сайта.

  • OSPF
  • EIGRP
  • route redistribution
  • packet tracer
  • сети для самых маленьких
  • Добавить метки