Интегральные схемы микросхемы. Большие интегральные схемы

30.07.2019 Проблемы

Интегральная микросхема (или просто интегральная схема) есть совокупность, как правило, большого количества взаимосвязанных компонентов (транзисторов, диодов, конденсаторов, резисторов и т.п.), изготовленная в едином технологическом цикле (т.е. одновременно), на одной и той же несущей конструкции - подложке - и выполняющая определенную функцию преобразования информации.

Термин «интегральная схема» (ИС) отражает факт объединения (интеграции) отдельных деталей - компонентов - в конструктивно единый прибор, а также факт усложнения выполняемых этим прибором функций по сравнению с функциями отдельных компонентов.

Компоненты, которые входят в состав ИС и тем самым не могут быть выделены из нее в качестве самостоятельных изделий, называются элементами ИС или интегральными элементами. Они обладают некоторыми особенностями по сравнению с транзисторами и т.д., которые изготавливаются в виде конструктивно обособленных единиц и соединяются в схему путем пайки.

В основе развития электроники лежит непрерывное усложнение функций, выполняемых электронной аппаратурой. На определенных этапах становится невозможным решать новые задачи старыми средствами или, как говорят, на основе старой элементной базы, например с помощью электронных ламп или дискретных транзисторов. Основными факторами, лежащими в основе смены элементной базы, являются: надежность, габариты и масса, стоимость и мощность.

Особенностью изделий микроэлектроники является высокая степень сложности выполняемых функций, для чего создаются схемы, в которых количество компонентов исчисляется миллионами. Отсюда ясно, что обеспечить надежность функционирования при соединении компонентов вручную - задача невыполнимая. Единственным способом ее решения является применение качественно новых высоких технологий.

Для изготовления интегральных схем используется групповой метод производства и планарная технология.

Групповой метод производства заключается в том, что, во-первых, на одной пластине полупроводникового материала одновременно изготавливается большое количество интегральных схем; во-вторых, если позволяет технологический процесс, то одновременно обрабатываются десятки таких пластин. После завершения цикла изготовления ИС пластина разрезается в двух взаимно-перпендикулярных направлениях на отдельные кристаллы, каждый из которых представляет собой ИС.

Планарная технология - это такая организация технологического процесса, когда все элементы и их составляющие создаются в интегральной схеме путем их формирования через плоскость.

Одна или несколько технологических операций при изготовлении ИС заключается в соединении отдельных элементов в схему и присоединении их к специальным контактным площадкам. Поэтому необходимо, чтобы выводы всех элементов и контактные площадки находились в одной плоскости. Такую возможность обеспечивает планарная технология.



Финальная операция - корпусирование - это помещение ИС в корпус с присоединением контактных площадок к ножкам ИС (рис. 2.20).


Стоимость D одной ИС (одного кристалла) упрощенно можно вычислить следующим образом:

где А - затраты на научно-исследовательские и опытно-кон­струк­торские работы по созданию ИС; В - затраты на технологическое оборудование, помещение и др.; С - текущие расходы на материалы, электроэнергию, заработную плату, в пересчете на одну пластину; Z - количество пластин, изготовляемых до амортизации основных производственных фондов; X - количество кристаллов на пластине; Y - отношение годных ИС к количеству, запущенному в производство в начале его.

Кроме очевидных комментариев относительно затрат, нужно отметить следующее. Увеличение Y достигается созданием все более современной технологии, пожалуй, наиболее сложной и чистой среди многих новейших производств. Роста числа кристаллов X на пластине можно достичь двумя путями: увеличением размера пластины и уменьшением размеров отдельных элементов. Эти оба направления используются разработчиками.

В заключение заметим, что все константы, входящие в формулу, не являются ни постоянными, ни зависимыми друг от друга, поэтому анализ на минимум стоимости на самом деле является сложным и многофакторным.

Классификация ИС. Классификация ИС может производиться по различным признакам, ограничимся здесь лишь одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки (рис. 2.21). Эти ИС составляют основу современной микроэлектроники.

Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки (рис. 2.22). В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщи­на пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше). Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные эле­менты типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т.п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

Гибридная ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называют навесными, подчеркивая этим их обособленность от основного технологического цикла получения пленочной части схемы.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений - металлической разводкой.

Полупроводни ковые ИС . В настоящее время различают следующие полупроводниковые ИС: биполярные, МОП (металл-окисел-полупроводник) и БИМОП. Последние представляют собой сочетание первых двух, и в них комбинируются положительные их качества.

Технология полупроводниковых ИС основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слои с разным типом проводимости р-n -переходы на границах слоев. Отдельные слои используются в качестве резисторов, а р-n -переходы - в диодных и транзисторных структурах.

Легирование пластины приходится осуществлять локально, т.е. на отдельных участках, разделенных достаточно большими расстояниями. Локальное легирование осуществляется с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках. При изготовлении полупроводниковых ИС роль маски обычно играет пленка двуокиси кремния SiO 2 , покрывающая поверхность кремниевой пластины. В этой пленке специальными методами гравируется необходимая совокупность отверстий различной формы или, как говорят, необходимый рисунок (рис. 2.22 ). Отверстия в масках, в частности в окисной пленке, называют окнами.

Теперь кратко охарактеризуем составные части (элементы) полупроводниковых ИС. Основным элементом биполярных ИС является n-p-n -транзистор: на его изготовление ориентируется весь технологический цикл. Все другие элементы должны изготавливаться, по возможности, одновременно с этим транзистором, без дополнительных технологических операций.

Основным элементом МДП ИС является МДП-транзистор. Изготовление других элементов также подстраивается под базовый транзистор.

Элементы биполярной ИС необходимо тем или иным способом изолировать друг от друга с тем, чтобы они не взаимодействовали через кристалл.

Элементы МОП ИС не нуждаются в специальной изоляции друг от друга, так как взаимодействие между смежными МОП-транзисторами не имеет места. В этом - одно из главных преимуществ МОП ИС по сравнению с биполярными.

Характерная особенность полупроводниковых ИС состоит в том, что среди их элементов отсутствуют катушки индуктивности и, тем более, трансформаторы. Это объясняется тем, что до сих пор не удалось использовать в твердом теле какое-либо физическое явление, эквивалентное электромагнитной индукции. Поэтому при разработке ИС стараются реализовать необходимую функцию без использования индуктивностей, что в большинстве случаев удается. Если же катушка индуктивности или трансформатор принципиально необходимы, их приходится использовать в виде навесных компонентов.

Размеры кристаллов у современных полупроводниковых ИС достигают 20х20 мм 2 . Чем больше площадь кристалла, тем более сложную, более многоэлементную ИС можно на нем разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

Функциональную сложность ИС принято характеризовать степенью интеграции, т.е. количеством элементов (чаще всего транзисторов) на кристалле. Максимальная степень интеграции составляет 10 б элементов на кристалле. Повышение степени интеграции (а вместе с нею и сложности функций, выполняемых ИС) - одна из главных тенденций в микроэлектронике.

Для количественной оценки степени интеграции используют условный коэффициент k = lgN. В зависимости от его значения инте­ральные схемы называются по-разному:

k ≤ 2 (N ≤ 100) - интегральная схема (ИС);

2 ≤ k ≤ 3 (N ≤ 1000) - интегральная схема средней степени интеграции (СИС);

3 ≤ k ≤ 5 (N ≤ 10 5) - большая интегральная схема (БИС);
k > 5 (N>10 5) - сверхбольшая интегральная схема (СБИС).

Ниже приведены английские обозначения и их расшифровки:

IС - Integrated Circuit;

MSI - Medium Scale Integration;

LSI - Large Scale Integration;

VLSI - Very Large Scale Integration.

Кроме степени интеграции, используют еще такой показатель, как плотность упаковки - количество элементов (чаще всего транзисторов) на единицу площади кристалла. Этот показатель, который характеризует главным образом уровень технологии, в настоящее время составляет до 500-1000 элементов/мм 2 .

Гибридные ИС. Пленочные, а значит, и гибридные ИС в зависимости от технологии изготовления делятся на толсто- и тонкопленочные.

Толстопленочные ГИС (обозначим их ТсГИС) изготавливаются весьма просто. На диэлектрическую пластинку-подложку наносят пасты разного состава. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные - получение резисторов; диэлектрические - изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску - трафарет - с окнами в тех местах, куда должна попасть паста данного слоя. После этого приклеивают навесные компоненты и соединяют их выводы с контактными площадками.

Тонкопленочные ГИС (обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС. Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. Вырастив очередную пленку, меняют химический состав газа и тем самым электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, как в случае ТсГИС, либо маской, подобно окисной маске в полупроводниковых ИС (см. рис. 1.4).

Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.

Степень интеграции ГИС не может оцениваться так же, как в случае полупроводниковых ИС. Тем не менее, существует термин большая ГИС (или БГИС), который означает, что в состав ГИС в качестве навесных компонентов входят не отдельные транзисторы, а целые полупроводниковые ИС.

В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.

В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.

Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.

Анатомия транзистора
Транзисторы - основные микроскопические элементы электронной схемы - это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.

Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.

Большая интегральная схема

Современные интегральные микросхемы, предназначенные для поверхностного монтажа.

Советские и зарубежные цифровые микросхемы.

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро )схе́ма (ИС, ИМС, м/сх ), чип , микрочи́п (англ. chip - щепка, обломок, фишка) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) - ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент ( год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

Уровни проектирования

  • Физический - методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
  • Электрический - принципиальная электрическая схема (транзисторы , конденсаторы , резисторы и т. п.).
  • Логический - логическая схема (логические инверторы , элементы ИЛИ-НЕ, И-НЕ и т. п.).
  • Схемо- и системотехнический уровень - схемо- и системотехническая схемы (триггеры , компараторы , шифраторы , дешифраторы , АЛУ и т. п.).
  • Топологический - топологические фотошаблоны для производства.
  • Программный уровень (для микроконтроллеров и микропроцессоров) - команды ассемблера для программиста .

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР , которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

  • Генераторы сигналов
  • Аналоговые умножители
  • Аналоговые аттенюаторы и регулируемые усилители
  • Стабилизаторы источников питания
  • Микросхемы управления импульсных блоков питания
  • Преобразователи сигналов
  • Схемы синхронизации
  • Различные датчики (температуры и др.)

Цифровые схемы

  • Логические элементы
  • Буферные преобразователи
  • Модули памяти
  • (Микро)процессоры (в том числе ЦПУ в компьютере)
  • Однокристальные микрокомпьютеры
  • ПЛИС - программируемые логические интегральные схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например 2,5 - 5 В) и низкого (0 - 0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что мало вероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.
Статьи, партнеры Разное

История изобретения интегральной схемы

Первая логическая схема на кристаллах кремния была изобретена 52 года назад и содержала только один транзистор. Один из основателей компании Fairchild Semiconductor Роберт Нойс в 1959 году изобрел устройство, которое затем стало называться интегральной схемой, микросхемой или микрочипом. А почти на полгода раньше похожее устройство придумал инженер из компании Texas Instruments Джэк Килби. Можно сказать, что эти люди стали изобретателями микросхемы.

Интегральной микросхемой называется система из конструктивно связанных элементов, соединенных между собой электрическими проводниками. Также под интегральной схемой понимают кристалл с электронной схемой. Если интегральная схема заключена в корпус, то это уже микросхема.

Первая действующая интегральная микросхема была представлена Килби 12 сентября 1958. В ней использовалась разработанная им концепция, базирующаяся на принципе изоляции компонентов схемы p-n-переходами, изобретенном Куртом Леховеком.

Внешний вид новинки был немного страшноват, но Килби и не предполагал, что показанное им устройство положит начало всем информационным технологиям, иначе, по его словам, он сделал бы этот прототип покрасивее.

Но в тот момент важна была не красота, а практичность. Все элементы электронной схемы – резисторы, транзисторы, конденсаторы и остальные, - были размещены на отдельных платах. Так было до тех пор, пока не возникла мысль сделать всю схему на одном монолитном кристалле полупроводникового материала.

Самая первая интегральная микросхема Килби представляла собой маленькую германиевую полоску 11х1,5 мм с одним транзистором, несколькими резисторами и конденсатором. Несмотря на свою примитивность, эта схема выполнила свою задачу – вывела синусоиду на экран осциллографа.

Шестого февраля 1959 года Джэк Килби подал заявку на регистрацию патента на новое устройство, описанное им как объект из полупроводникового материала с полностью интегрированными компонентами электронной схемы. Его вклад в изобретение микросхемы был отмечен вручением ему в 2000 году Нобелевской премии в области физики.

Идея Роберта Нойса смогла решить несколько практических проблем, не поддавшихся интеллекту Килби. Он предложил использовать для микросхем кремний, а не германий, предложенный Джэком Килби.

Патенты были получены изобретателями в одном и том же 1959 году. Начавшееся между TI и Fairchild Semiconductor соперничество завершилось мирным договором. На взаимовыгодных условиях они создали лицензию на изготовление чипов. Но в качестве материала для микросхем выбрали все же кремний.

Производство интегральных схем было запущено на Fairchild Semiconductor в 1961 году. Они сразу заняли свою нишу в электронной промышленности. Благодаря их применению в создании калькуляторов и компьютеров в качестве отдельных транзисторов, дало возможность сделать вычислительные устройства более компактными, повысив при этом их производительность, значительно упростив ремонт компьютеров .

Можно сказать, что с этого момента началась эпоха миниатюризации, продолжающаяся по сей день. При этом абсолютно точно соблюдается закон, который сформулировал коллега Нойса Гордон Мур. Он предсказал, что число транзисторов в интегральных схемах каждые 2 года будет удваиваться.

Покинув Fairchild Semiconductor в 1968 году, Мур и Нойс создали новую компанию – Intel. Но это уже совсем другая история...

ИНТЕГРАЛЬНАЯ CXEMA (ИС, интегральная микросхема, микросхема), функционально законченное микроэлектронное изделие, представляющее собой совокупность электрически связанных между собой элементов (транзисторов и др.), сформированных в полупроводниковой монокристаллической пластине. ИС являются элементной базой всех современных радиоэлектронных устройств, устройств вычислительной техники, информационных и телекоммуникационных систем.

Историческая справка. ИС изобретена в 1958 Дж. Килби (Нобелевская премия, 2000), который, не разделяя германиевую монокристаллическую пластину на отдельные сформированные в ней транзисторы, соединил их между собой тончайшими проволоками, так что полученное устройство стало законченной радиоэлектронной схемой. Спустя полгода американский физик Р. Нойс реализовал так называемую планарную кремниевую ИС, в которой при каждой области биполярных транзисторов (эмиттере, базе и коллекторе) на поверхности кремниевой пластины создавались металлизированные участки (так называемые контактные площадки), а соединения между ними осуществлялись тонкоплёночными проводниками. В 1959 году в США начался промышленный выпуск кремниевых ИС; массовое производство ИС в СССР организовано в середине 1960-х годов в г. Зеленоград под руководством К. А. Валиева.

Технология ИС. Структура полупроводниковой ИС показана на рисунке. Транзисторы и другие элементы формируются в очень тонком (до нескольких мкм) приповерхностном слое кремниевой пластины; сверху создаётся многоуровневая система межэлементных соединений. С увеличением числа элементов ИС количество уровней растёт и может достигать 10 и более. Межэлементные соединения должны обладать низким электрическим сопротивлением. Этому требованию удовлетворяет, например, медь. Между слоями проводников размещаются изолирующие (диэлектрические) слои (SiO 2 и др.). На одной ПП пластине одновременно формируется до нескольких сотен ИС, после чего пластину разделяют на отдельные кристаллы (чипы).

Технологический цикл изготовления ИС включает несколько сотен операций, важнейшей из которых является фотолитография (ФЛ). Транзистор содержит десятки деталей, контуры которых формируются в результате ФЛ, определяющей также конфигурацию межсоединений в каждом слое и положение проводящих областей (контактов) между слоями. В технологическом цикле ФЛ повторяется несколько десятков раз. За каждой операцией ФЛ следуют операции изготовления деталей транзисторов, например осаждение диэлектрической, ПП и металлической тонких плёнок, травление, легирование методом имплантации ионов в кремний и др. Фотолитография определяет минимальный размер (МР) отдельных деталей. Главным инструментом ФЛ являются оптические проекционные степперы-сканеры, с помощью которых выполняется пошаговое (от чипа к чипу) экспонирование изображения (освещение чипа, на поверхность которого нанесён фоточувствительный слой - фоторезист, через маску, называемую фотошаблоном) с уменьшением (4:1) размеров изображения по отношению к размерам маски и со сканированием светового пятна в пределах одного чипа. МР прямо пропорционален длине волны источника излучения. Первоначально в установках ФЛ использовались g- и i-линии (436 и 365 нм соответственно) спектра излучения ртутной лампы. На смену ртутной лампе пришли эксимерные лазеры на молекулах KrF (248 нм) и ArF (193 нм). Совершенствование оптической системы, применение фоторезистов с высокими контрастом и чувствительностью, а также специальной техники высокого разрешения при проектировании фотошаблонов и степперов-сканеров с источником света длиной волны 193 нм позволяют достичь МР, равных 30 нм и менее, на больших чипах (площадью 1-4 см 2) с производительностью до 100 пластин (диаметром 300 мм) в час. Продвижение в область меньших (30-10 нм) МР возможно при использовании мягкого рентгеновского излучения или экстремального ультрафиолета (ЭУФ) с длиной волны 13,5 нм. Из-за интенсивного поглощения излучения материалами на этой длине волны не может быть применена преломляющая оптика. Поэтому в ЭУФ-степперах используют отражающую оптику на рентгеновских зеркалах. Шаблоны также должны быть отражающими. ЭУФ-литография является аналогом проекционной оптической, не требует создания новой инфраструктуры и обеспечивает высокую производительность. Таким образом, технология ИС к 2000 преодолела рубеж 100 нм (МР) и стала нанотехнологией.

Структура интегральной схемы: 1- пассивирующий (защитный) слой; 2 - верхний слой проводника; 3 - слой диэлектрика; 4 - межуровневые соединения; 5 - контактная площадка; 6 - МОП-транзисторы; 7 - кремниевая пластина (подложка).

Направления развития. ИС разделяют на цифровые и аналоговые. Основную долю цифровых (логических) микросхем составляют ИС процессоров и ИС памяти, которые могут объединяться на одном кристалле (чипе), образуя «систему-на-кристалле». Сложность ИС характеризуется степенью интеграции, определяемой числом транзисторов на чипе. До 1970 степень интеграции цифровых ИС увеличивалась вдвое каждые 12 месяцев. Эта закономерность (на неё впервые обратил внимание американский учёный Г. Мур в 1965) получила название закона Мура. Позднее Мур уточнил свой закон: удвоение сложности схем памяти происходит через каждые 18 месяцев, а процессорных схем - через 24 месяца. По мере увеличения степени интеграции ИС вводились новые термины: большая ИС (БИС, с числом транзисторов до 10 тысяч), сверх-большая (СБИС - до 1 миллиона), ультрабольшая ИС (УБИС - до 1 миллиарда) и гигантская БИС (ГБИС - более 1 миллиарда).

Различают цифровые ИС на биполярных (Би) и на МОП (металл - оксид - полупроводник) транзисторах, в том числе в конфигурации КМОП (комплементарные МОП, т. е. взаимодополняющие р-МОП и w-МОП транзисторы, включённые последовательно в цепи «источник питания - точка с нулевым потенциалом»), а также БиКМОП (на биполярных транзисторах и КМОП-транзисторах в одном чипе).

Увеличение степени интеграции достигается уменьшением размеров транзисторов и увеличением размеров чипа; при этом уменьшается время переключения логического элемента. По мере уменьшения размеров уменьшались потребляемая мощность и энергия (произведение мощности на время переключения), затраченная на каждую операцию переключения. К 2005 году быстродействие ИС улучшилось на 4 порядка и достигло долей наносекунды; число транзисторов на одном чипе составило до 100 миллионов штук.

Основную долю (до 90%) в мировом производстве с 1980 составляют цифровые КМОП ИС. Преимущество таких схем заключается в том, что в любом из двух статических состояний («0» или «1») один из транзисторов закрыт, и ток в цепи определяется током транзистора в выключенном состоянии I BЫKЛ. Это означает, что, если I BЫKЛ пренебрежимо мал, ток от источника питания потребляется только в режиме переключения, а потребляемая мощность пропорциональна частоте переключения и может быть оценена соотношением Ρ Σ ≈C Σ ·Ν·f·U 2 , где C Σ - суммарная ёмкость нагрузки на выходе логического элемента, N - число логических элементов на чипе, f - частота переключения, U - напряжение питания. Практически вся потребляемая мощность выделяется в виде джоулева тепла, которое должно быть отведено от кристалла. При этом к мощности, потребляемой в режиме переключения, добавляется мощность, потребляемая в статическом режиме (определяется токами I BЫKЛ и токами утечки). С уменьшением размеров транзисторов статическая мощность может стать сравнимой с динамической и достигать по порядку величины 1 кВт на 1 см 2 кристалла. Проблема большого энерговыделения вынуждает ограничивать максимальную частоту переключений высокопроизводительных КМОП ИС диапазоном 1-10 ГГц. Поэтому для увеличения производительности «систем-на-кристалле» используют дополнительно архитектурные (так называемые многоядерные процессоры) и алгоритмические методы.

При длинах канала МОП-транзисторов порядка 10 нм на характеристики транзистора начинают влиять квантовые эффекты, такие как продольное квантование (электрон распространяется в канале как волна де Бройля) и поперечное квантование (в силу узости канала), прямое туннелирование электронов через канал. Последний эффект ограничивает возможности применения КМОП-элементов в ИС, так как вносит большой вклад в суммарный ток утечки. Это становится существенным при длине канала 5 нм. На смену КМОП ИС придут квантовые приборы, молекулярные электронные приборы и др.

Аналоговые ИС составляют широкий класс схем, выполняющих функции усилителей, генераторов, аттенюаторов, цифроаналоговых и аналого-цифровых преобразователей, компараторов, фазовращателей и т.д., в том числе низкочастотные (НЧ), высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) ИС. СВЧ ИС - схемы относительно небольшой степени интеграции, которые могут включать не только транзисторы, но и плёночные катушки индуктивности, конденсаторы, резисторы. Для создания СВЧ ИС используется не только ставшая традиционной кремниевая технология, но и технология гетеропереходных ИС на твёрдых растворах Si - Ge, соединениях A III B V (например, арсениде и нитриде галлия, фосфиде индия) и др. Это позволяет достичь рабочих частот 10-20 ГГц для Si - Ge и 10-50 ГГц и выше для СВЧ ИС на соединениях A III B V . Аналоговые ИС часто используют вместе с сенсорными и микромеханическими устройствами, биочипами и др., которые обеспечивают взаимодействие микроэлектронных устройств с человеком и окружающей средой, и могут быть заключены с ними в один корпус. Такие конструкции называются многокристальными или «системами-в-корпусе».

В будущем развитие ИС приведёт к слиянию двух направлений и созданию микроэлектронных устройств большой сложности, содержащих мощные вычислительные устройства, системы контроля окружающей среды и средства общения с человеком.

Лит. смотри при ст. Микроэлектроника.

А. А. Орликовский.