Жёсткий диск, что это такое? Из чего состоит и как работает жёсткий диск. Плюсы и минусы HDD в сравнении с SSD

19.09.2019 Принтеры и сканеры

Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

Н акопитель на жестком диске является, чуть ли не одним из самых важных элементов современного компьютера. Так как он предназначен в первую очередь для долгосрочного хранения ваших данных, это могут быть игры, фильмы и другие объемные файлы, хранящиеся у вас на вашем ПК. И было бы очень жалко если он мог бы неожиданно сломаться, в результате чего вы можете потерять все свои данные, которые бывает очень сложно восстановить. И чтобы правильно эксплуатировать и заменять этот элемент, необходимо понимать как он работает и что из себя представляет – жесткий диск.


Из этой статьи вы узнаете о работе жесткого диска, его компонентах и технических характеристиках.

Обычно главными элементами жесткого диска являются несколько круглых пластин из алюминия. В отличие от гибких дисков(забытых дискеток) их сложно согнуть, поэтому и появилось название жесткий диск. В некоторых устройствах они устанавливаются несъемные, и называются фиксированными (fixeddisk). Но в обычных стационарных компьютерах и даже некоторых моделей ноутбуков и планшетов их можно без проблем заменить.

Рисунок: Жесткий диск без верхней крышки

Заметка!

Почему жесткие диски иногда называют – винчестер и какое отношение они имеют к огнестрельному оружию. Когда то в 1960-х годах компания IBMвыпустила скоростной на тот момент жесткий диск с номером разработки 30-30. Что совпало с обозначением известного нарезного оружия Winchester, и поэтому этот термин вскоре закрепился в компьютерном жаргонном сленге. А на самом же деле жесткие диски не имеют ничего общего с настоящими винчестерами.

Как работает накопитель на жестких дисках

Запись и считывание информации, находящейся на концентрических окружностях жесткого диска, разбитых на секторы, производится посредствам универсальных головок записи/чтения.

Все стороны диска предусматривают свою собственную дорожку для записи и чтения, однако головки располагаются на общем для всех дисков приводе. По этой причине головки перемещаются синхронно.

Видео YouTube: Работа открытого жесткого диска

Нормальная работа накопителя не допускает касаний между головками и магнитной поверхностью диска. Однако в случае отсутствия электроэнергии и остановки устройства головки все же опускаются на магнитную поверхность.

Во время работы жесткого диска между поверхностью вращающейся пластины и головкой образуется незначительный воздушный промежуток. Если в этот промежуток проникает пылинка или устройство подвергается встряске, велика вероятность того, что головка столкнется с вращающейся поверхностью. Сильный удар может стать причиной выхода из строя головки. Результатом этого выхода может быть повреждение нескольких байтов или же полная неработоспособность устройства. По этой причине во многих устройствах магнитная поверхность легируется, после чего на нее наносится специальная смазка, позволяющая справляться с периодической встряской головок.

Некоторые современные диски используют механизм загрузки/разгрузки, который не позволяет головкам касаться магнитной поверхности даже в случае отключения электропитания.

Форматирование высокого и низкого уровня

Использование форматирования высокого уровня позволяет операционной системе создавать структуры, упрощающую работу с хранящимися на жестком диске файлами и данными. Все имеющиеся разделы (логические диски) снабжаются загрузочным сектором тома, двумя копиями таблицы размещения файлов и корневым каталогом. Посредствам вышеуказанных структур, операционной системе удается производить распределение дискового пространства, отслеживание расположения файлов, а также обход поврежденных участков на диске.

Другими словами, форматирования высокого уровня сводится к созданию оглавлений диска и файловой системы (FAT, NTFS и т.п.). К «настоящему» форматированию можно отнести лишь форматирование низкого уровня, во время которого происходит деление диска по дорожкам и секторам. Посредствам DOS-команды FORMAT гибкий диск подвергается сразу обоим типам форматирования, тогда как жесткий - лишь форматированию высокого уровня.

Для того, что бы произвести низкоуровневое форматирование на жестком диске, необходимо использование специальной программы, чаще всего предоставляемой компанией-производителем диска. Форматирование гибких дисков посредствам FORMAT подразумевает выполнение обеих операций, тогда как в случае с жесткими дисками вышеуказанные операции следует выполнять по раздельности. Более того, жесткий диск подвергается и третьей операции - созданию разделов, которые являются необходимым условием для использования на одном ПК более одной операционной системы.

Организация нескольких разделов предоставляет возможность устанавливать на каждый из них свою операционную инфраструктуру с отдельным томом и логическими дисками. Каждый том или логический диск имеет своё буквенное обозначение(например диск C,D или E).

Из чего состоит жесткий диск

Практически каждый современный винчестер включает один и тот же набор компонентов:

диски (их количество чаще всего доходит до 5 штук);

головки чтения/записи (их количество чаще всего доходит до 10 штук);

механизм привода головок (данный механизм устанавливает головки в необходимое положение);

двигатель привода дисков (устройство, приводящее во вращение диски);

воздушный фильтр (фильтры, расположенные внутри корпуса накопителя);

печатную плату со схемами управления (посредствам этого компонента производится управление накопителем и контроллером);

кабели и разъемы (электронные компоненты HDD).

В качестве корпуса для дисков, головок, механизма привода головок и двигателя привода дисков чаще всего используется герметичный короб — HDA. Обычно данный короб является единым узлом, который практически никогда не вскрывается. Иные компоненты, не входящие в HDA, к числу которых можно отнести элементы конфигурации, печатную плату и лицевую панель, — съемные.

Автоматическая парковка головок и система контроля

На случай отключения питания предусмотрена контактная парковочная система, задача которой сводится к тому, чтобы опустить штангу с головками на сами диски. Независимо от того, что накопитель выдерживает десятки тысяч подъемов и спусков считывающих головок, происходить это все должно на специально отведенных для этих действий участках.

Во время постоянных подъемов и спусков происходит неизбежная абразия магнитного слоя. Если после износа накопитель подвергнется встряске, то вероятней всего произойдет повреждение диска или головок. Для предотвращения вышеуказанных неприятностей, современные накопители снабжаются специальным механизмом загрузки/разгрузки, представляющим собой пластину, которая помещается на внешнюю поверхность жестких дисков. Эта мера позволяет предотвратить касание головки и магнитной поверхности даже в случае отключения питания. При отключении напряжения накопитель самостоятельно «паркует» головки на поверхности наклонной пластины.

Немного о воздушных фильтрах и воздухе

Практически все жесткие диски снабжены двумя воздушными фильтрами: барометрическим и фильтром рециркуляции. Отличает вышеуказанные фильтры от сменяемых моделей, используемых в накопителях старшего поколения, то, что они помещены внутрь корпуса и их замена не предусматривается до конца эксплуатационного срока.

Старые диски использовали технологию постоянной перегонки воздуха внутрь корпуса и обратно, используя при этом фильтр, который нуждался в периодической смене.

Разработчикам современных накопителей от этой схемы пришлось отказаться, а потому фильтр рециркуляции, который расположен в герметичном корпусе HDA, применяется лишь для фильтрации находящегося внутри короба воздуха от мельчайших частиц, оказавшихся внутри корпуса. Независимо от всех предпринятых мер предосторожности, мелкие частицы все же образуются после многократных «посадок» и «взлетов» головок. С учетом того, что корпус накопителя отличается своей герметичностью и в нем происходит перекачка воздуха, он продолжает функционировать даже в условиях сильно загрязненной окружающей среды.

Интерфейсные разъемы и соединения

Многие современные накопители на жестких дисках снабжены несколькими интерфейсными разъемами, предназначенными для подключения к источнику питания и к системе в целом. Как правило, накопитель содержит минимум три разновидности разъемов:

интерфейсные разъемы;

разъем для подачи питания;

разъем для заземления.

Отдельного внимания заслуживают интерфейсные разъемы, поскольку они предназначены для получения/передачи накопителем команд и данных. Многие стандарты не исключают возможность подключения нескольких накопителей к одной шине.

Как уже упоминалось выше, накопители на HDD могут быть снабжены несколькими интерфейсными разъемами:

MFM и ESDI - вымершие разъемы, использовавшиеся на первых винчестерах;

IDE/ATA - разъем для подключения накопителей, который долгое время был самым распространённым по причине своей невысокой стоимости. Технически этот интерфейс схож с 16-разрядной шиной ISA. Последующее развитие стандартов IDE поспособствовало росту скорости обмена данными, а также появлению возможности напрямую обратиться к памяти посредствам DMA технологии;

Serial ATA - разъем, заменивший собой IDE, который физически является однонаправленной линией, используемой для последовательной передачи данных. Будучи в режиме совместимости схож с IDE интерфейсом, однако, наличие «родного» режима позволяет воспользоваться дополнительным набором возможностей.

SCSI - универсальный интерфейс, который активно применялся на серверах для подключения HDD и иного рода устройств. Несмотря на хорошие технические показатели, не стал таким распространенным как IDE по причине своей дороговизны.

SAS - последовательный аналог SCSI.

USB - интерфейс, который необходим для подключения внешних винчестеров. Обмен информацией в данном случае происходит посредствам протокола USB Mass Storage.

FireWire - разъем аналогичный USB, необходим для подключения внешнего HDD.

Fibre Channel -интерфейс, используемый системами высокого класса за счет высокой скорости передачи данных.

Показатели качества жестких дисков

Емкость — объем информации, вмещаемый накопителем. Этот показатель в современных винчестерах может достигать до 4 терабайт(4000 гигабайт);

Быстродействие . Данный параметр оказывает непосредственное влияние на время отклика и среднюю скорость передачи информации;

Надежность – показатель, определяемый средним временем наработки на отказ.

Ограничения физической емкости

Максимальный объем емкости, используемой жестким диском, зависит от целого ряда факторов, к числу которых можно отнести интерфейс, драйвера, операционную и файловую систему.

У первого накопителя АТА, выпущенного в 1986 году, имелось ограничение емкости, максимальное значение которого составляло 137 Гб.

Разные версии BIOS также способствовали уменьшению максимальной емкости жестких дисков, а потому системы, скомпонованные до 1998 г., имели емкость – до 8,4 Гб, а системы, выпущенные до 1994 г., - 528 Мб.

Даже после решения проблем с BIOS ограничение емкости накопителей с интерфейсом подключения АТА осталось, максимальное его значение составляло в 137 Гб. Это ограничение было преодолено посредствам стандарта ATA-6, выпущенного в 2001 г. Данный стандарт использовал расширенную схему адресации, что, в свою очередь, поспособствовало увеличению емкости накопителей до 144 Гб. Подобное решение позволило явить свету накопители с интерфейсами PATA и SATA, у которых объем вмещаемой информации — выше указанного ограничения в 137 Гб.

Ограничения ОС на максимальный объем

Практически все современные операционные системы не накладывают каких-либо ограничений на такой показатель как емкость жестких дисков, чего нельзя сказать о более ранних версиях операционных систем.

Так, например, DOS не распознавал жесткие диски, емкость которых превышала 8,4 Гб, поскольку доступ к накопителям в данном случае выполнялся посредствам LBA-адресации, при этом в DOS 6.x и более ранних версиях поддерживалась лишь CHS-адресация.

Ограничение емкости жесткого диска также имеется в случае установки ОС Windows 95. Максимальное значение этого ограничения — 32 Гб. Помимо этого, обновленными версиями Windows 95 поддерживается лишь файловая система FAT16, которая, в свою очередь, налагает ограничение в размере 2 Гб на размеры разделов. Из этого следует, что в случае использования жесткого диска на 30 Гб, его нужно поделить на 15 разделов.

Ограничения операционной системы Windows 98 допускают использование жестких дисков большего объема.

Характеристики и параметры

Каждый жёсткий диск обладает перечнем технических характеристик, согласно которым и устанавливается его иерархия использования.

Первым делом, на что следует обратить внимание, так это на тип используемого интерфейса. С недавних пор каждый компьютер в качестве усовершенствованного и более скоростного интерфейса начал использовать SATA .

Второй не менее важный момент — объём свободного места на жёстком диске. Минимальное его значение на сегодняшний день составляет лишь 80 Гб, при этом максимальное – 4 Тб.

Еще одной важной характеристикой в случае приобретения ноутбука является форм-фактор жесткого диска.

Наиболее востребованными в этом случае считаются модели, размер которых — 2,5 дюйма, при этом в настольных ПК размер составляет 3,5 дюйма.

Не стоит пренебрегать и скоростью вращения шпинделя, минимальные значения – 4200, максимальные – 15000 оборотов в минуту. Все вышеуказанные характеристики оказывают непосредственное влияние на скорость работы винчестера, которая выражается в Мб/С.

Скорость работы жесткого диска

Немаловажным значением обладают скоростные показатели жёсткого диска, которые определяются:

Скоростью вращения шпинделя , измерение которой проводится в оборотах в минуту. В ее задачу не входит непосредственное выявление реальной скорости обмена, она лишь позволяет отличить более скоростное устройство от менее скоростного устройства.

Временем доступа . Данный параметр вычисляет затрачиваемое винчестером время от получения команды до передачи информации по интерфейсу. Чаще всего фигурирую среднее и максимальное значения.

Временем позиционирования головок . Это значение указывает затрачиваемое головками время для перемещения и установки с одного трека на другой трек.

Пропускной способностью или производительностью диска во время последовательной передачи больших объёмов данных.

Внутренней скоростью передачи данных или скоростью передаваемой информации от контроллера к головкам.

Внешней скоростью передачи данных или скоростью передаваемой информации по внешнему интерфейсу.

Немного о S.M.A.R.T.

S.M.A.R.T. – утилита, предназначенная для самостоятельной проверки состояния современных винчестеров, поддерживающих интерфейс PATA и SATA, а также работающих в персональных компьютерах с операционной системой Windows (от NT до Vista).

S.M.A.R.T. производит подсчет и анализ состояния подключенных жестких дисков через равные отрезки времени, независимо от того запущена операционная система или нет. После того, как анализ был проведен, значок результата диагностики отображается в правом углу панели задач. Основываясь на результатах, полученных во время S.M.A.R.T. диагностики, значок может указывать:

На отличное состояние каждого подключенного к компьютеру винчестера, поддерживающего S.M.A.R.T. технологию;

На то, что один или несколько показателей состояния не соответствуют пороговому значению, при этом у параметров Pre-Failure / Advisory нулевое значение. Вышеуказанное состояние жесткого диска не считается предаварийным, однако если этот винчестер содержит важную информацию, рекомендуется как можно чаще сохранять ее на другом носителе или произвести замену HDD.

На то, что один или несколько показателей состояния не соответствуют пороговому значению, при этом у параметров Pre-Failure / Advisory активное значение. По мнению разработчиков жестких дисков, это состояние предаварийное, и хранить информацию на таком винчестере не стоит.

Фактор надежности

Такой показатель, как надежность хранения данных является одним из наиболее важных характеристик жесткого диска. Фактор отказа у винчестера — раз в сто лет, из чего можно сделать вывод, что HDD считается наиболее надежным источником хранения данных. При этом на надежность каждого диска непосредственное влияние оказывает условие эксплуатации и само устройство. Порой производители поставляют на рынок еще совсем «сырой» продукт, а потому пренебрегать резервным копированием и полностью полагаться на винчестер нельзя.

Стоимость и цена

С каждым днем стоимость HDD становится всё меньше. Так, например, сегодня цена жесткого диска ATA на 500 Гб составляет в среднем 120 долларов, к сравнению, в 1983 г. винчестер емкостью 10 Мб стоил 1800 долларов.

Из вышесказанного утверждения можно сделать вывод, что стоимость HDD будет продолжать падать, а потому в дальнейшем все желающие смогут приобрести довольно емкие диски по приемлемым ценам.

Сегодня мы поговорим о том, что такое HDD накопители, какие они бывают, рассмотрим их характеристики. Узнаем какие из них являются лучшими, и какие HDD покупать не стоит.

Жёсткий диск — это накопитель информации, который применяется в компьютерах и ноутбуках, для установки на него операционной системы, драйверов, программ, а также для хранения всевозможных пользовательских файлов.

HDD — наполовину механическое, наполовину электронное устройство, состоящее из магнитных пластин, считывающих головок, шпинделя(мотора), и платы управления. Шпиндель, на котором закреплены магнитные пластины, раскручивает их до нескольких тысяч об. в минуту.
Считается, что чем выше крутящий момент шпинделя, то и скорость его чтения больше. Хотя к немаловажным факторам относятся: время произвольного доступа и плотность записи. HDD отличаются между собой скоростью, объёмом, ну и конечно надёжностью. Этот параметр им гарантирует фирма производитель.

Какие фирмы производители лучше?

Самыми надёжными и быстрыми считаются накопители фирмы Samsung. Фирма Hitachi выпускает тоже очень хорошие диски, но скорость у них меньше. Средним качеством обладают HDD фирмы Western Digital. Получилось так что эта фирма изначально стала выпускать свою продукцию на дешёвых фабриках, не имеющих высококлассного оборудования. Самым низким качеством производства устройств этого типа из известных брендов является некогда лидирующая американская фирма по электронике Seagate. Ну а фирмы Fujitsu и Toshiba сейчас вовсе не могут похвастаться качеством производства жёстких дисков.

Поэтому при выборе покупки HDD лучше выбрать либо Samsung, либо Hitachi. Они отличаются своими габаритами. На компьютеры устанавливаются HDD имеющие ширину диска 3,5 (дюйма), а на ноутбуки 2,5 (дюйма).
Скорость винчестера системного блока компьютера составляет более 7000 об.мин., но в продаже попадаются HDD с производительностью не выше 5500 об.мин. Такие низкооборотные экземпляры покупать не стоит. А вот накопители ноутбуков с частотой вращения 5400 об.мин. работают гораздо тише и не так греются.

Буфером у жёсткого диска называется кеш память, и служит для его ускорения. Она колеблется от 32 до 128 Мб. Хотя 32 Мб. будет и так достаточно для его нормальной работы. Скорость чтения и записи является одним из важнейших параметров, который очень сильно влияет на рабочую производительность устройства.

Скорость обмена информацией

Хорошим показателем для HDD принято считать скорость чтения 110 — 140 мб/с. Не следует покупать HDD со скоростью не превышающей 100 мб/с. Время произвольного доступа является вторым важным показателем производительности винчестера, после чтения и записи. Считается, что чем этот параметр меньше, тем лучше качество устройства. В основном он влияет на копирование и чтение маленьких файлов. Довольно неплохо, если время доступа HDD составляет 13 — 14 м.с. Носители данного типа бывают с двумя видами разъёмов. Это SATA 2 (более ранний) и SATA 3. Эти разъёмы совместимы между собой, поэтому это никак не отражается на работе накопителей и их скорости. За последние десять лет жёсткие диски совершенно не изменились. Поэтому и цена на них осталась примерно на том же уровне.

Количество операций ввода-вывода в секунду (англ. IOPS ) - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Сопротивляемость ударам (англ. G-shock rating ) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.

Уровень шума

Силиконовые шайбы для крепления жёстких дисков. Уменьшают вибрацию и шум

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах . Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Для снижения шума от жёстких дисков применяют следующие методы:

Производители

Изначально на рынке было большое разнообразие жёстких дисков, производившихся множеством компаний . В связи с ужесточением конкуренции, бурным ростом ёмкости, требующим современных технологий, и понижением норм прибыли большинство производителей было либо куплено конкурентами, либо перешло на другие виды продукции.

В настоящее время в связи с продвижением на рынок внешних накопителей и развитием технологий типа SSD количество фирм, предлагающих готовые решения, вновь возросло.

Устройство

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона

Разобранный жёсткий диск Samsung HD753LJ ёмкостью 750 Гб

Разобранный жёсткий диск

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя .

Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нет вакуума . Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом , а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля , который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа , марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну . Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с бо́льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (от 3600 до 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки . Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трёхфазный синхронный , что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенных «звездой» с отводом посередине, а ротор - постоянный секционный магнит.

Сепаратор (разделитель) - пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.

Устройство позиционирования

Разобранный жёсткий диск. Снята верхняя пластина статора соленоидного двигателя

Устройство позиционирования головок (сервопривод, жарг. актуатор ) представляет из себя малоинерционный соленоидный двигатель. Оно состоит из неподвижной пары сильных неодимовых постоянных магнитов , а также катушки (соленоид) на подвижном кронштейне блока головок.

Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет её точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.

В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) одним из источников шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путем, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология - Automatic Acoustic Management . Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA /ATAPI-6 (для этого нужно менять значение управляющей переменной), хотя некоторые производители делали экспериментальные реализации и ранее.

Блок электроники

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления , принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр , используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

Существуют утилиты, способные тестировать физические секторы диска, и ограниченно просматривать и править его служебные данные. Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору програмного обеспечения соответствующего семейства моделей.

Геометрия магнитного диска

С целью адресации пространства поверхности пластин диска делятся на дорожки - концентрические кольцевые области. Каждая дорожка делится на равные отрезки - секторы . Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.

Цилиндр - совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора - конкретный сектор на дорожке.

Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нём. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA -1 была введена функция автоопределения геометрии (команда Identify Drive).

Влияние геометрии на скорость дисковых операций

Геометрия жёсткого диска влияет на скорость чтения записи. Ближе ко внешнему краю пластины диска возрастает длина дорожек (вмещается больше секторов) и, соответственно, количество данных, которые устройство может считать или записать за один оборот. При этом скорость чтения может изменяться от 50 до 30 Мб/с. Зная эту особенность, целесообразно размещать корневые разделы операционных систем именно здесь. Нумерация секторов начинается от внешнего края диска с нуля. В GParted внешний край диска располагается слева (на диаграмме) и сверху (в списке).

Особенности геометрии жёстких дисков со встроенными контроллерами

Зонирование

На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон (англ. Zoned Recording ). Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на дорожках внешних зон секторов больше, чем на дорожках внутренних. Это позволяет, используя бо́льшую длину внешних дорожек, добиться более равномерной плотности записи, увеличивая ёмкость пластины при той же технологии производства.

Резервные секторы

Для увеличения срока службы диска на каждой дорожке могут присутствовать дополнительные резервные секторы. Если в каком-либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remapping ). Данные, хранившиеся в нём, при этом могут быть потеряны или восстановлены при помощи ECC , а ёмкость диска останется прежней. Существует две таблицы переназначения: одна заполняется на заводе, другая - в процессе эксплуатации. Границы зон, количество секторов на дорожку для каждой зоны и таблицы переназначения секторов хранятся в ПЗУ блока электроники.

Логическая геометрия

По мере роста емкости выпускаемых жёстких дисков их физическая геометрия перестала вписываться в ограничения, накладываемые программными и аппаратными интерфейсами (см.: Объём жёсткого диска). Кроме того, дорожки с различным количеством секторов несовместимы со способом адресации CHS. В результате контроллеры дисков стали сообщать не реальную, а фиктивную, логическую геометрию , вписывающуюся в ограничения интерфейсов, но не соответствующую реальности. Так, максимальные номера секторов и головок для большинства моделей берутся 63 и 255 (максимально возможные значения в функциях прерывания BIOS INT 13h), а число цилиндров подбирается соответственно ёмкости диска. Сама же физическая геометрия диска не может быть получена в штатном режиме работы и другим частям системы неизвестна.

Адресация данных

Минимальной адресуемой областью данных на жёстком диске является сектор . Размер сектора традиционно равен 512 байт. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.

Компания Western Digital уже сообщила о начале использования новой технологии форматирования, названной Advanced Format , и выпустила серию накопителей, использующих новую технологию. К этой серии относятся линейки AARS/EARS и BPVT.

Перед использованием накопителя с технологией Advanced Format для работы в Windows XP необходимо выполнить процедуру выравнивания с помощью специальной утилиты. Если разделы на диске создаются Windows Vista , Windows 7 и Mac OS выравнивание не требуется.

В Windows Vista, Windows 7, Windows Server 2008 и Windows Server 2008 R2 присутствует ограниченная поддержка дисков с увеличенным размером сектора.

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS ) и линейная адресация блоков (англ. linear block addressing, LBA ).

CHS

При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра , номером головки и номером сектора . В дисках объёмом больше 528 482 304 байт (504 Мб) со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами» (см. ).

LBA

При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Необходимость LBA была вызвана, в частности, появлением дисков больших объёмов , которые нельзя было полностью использовать с помощью старых схем адресации.

Метод LBA соответствует Sector Mapping для SCSI . BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.

Технологии записи данных

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряжённости магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод продольной записи

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/см². Специалисты Hitachi называет предел для этой технологии в 2,3−3,1 Тбит/см², представители Seagate Technology - 7,75 Тбит/см².

Структурированные носители данных

Структурированный (паттернированный) носитель данных (англ. Bit patterned media ), - перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.

Метод самосборки полимеров

Сейчас последней разработкой в области увеличения объёма HDD является метод самосборки полимеров (14 ноября 2012года).

Сравнение интерфейсов

Пропускная способность, Мбит/с Максимальная длина кабеля, м Требуется ли кабель питания Количество накопителей на канал Число проводников в кабеле Другие особенности
UltraATA /133 1064 0,46 Да (3,5") / Нет (2,5") 2 40/80 Controller+2Slave, горячая замена невозможна
SATA -300 3000 1 Да 1 7 Host/Slave, возможна горячая замена на некоторых контроллерах
SATA -600 6144 нет данных Да 1 7
FireWire /400 400 63 4/6
FireWire /800 800 4,5 (при последовательном соединении до 72 м) Да/Нет (зависит от типа интерфейса и накопителя) 63 9 устройства равноправны, горячая замена возможна
USB 2.0 480 5 (при последовательном соединении, через хабы , до 72 м) 127 4
USB 3.0 4800 нет данных Да/Нет (зависит от типа накопителя) нет данных 9 Двунаправленный, совместим с USB 2.0
Ultra-320 SCSI 2560 12 Да 16 50/68 устройства равноправны, горячая замена возможна
SAS 3000 8 Да Свыше 16384 горячая замена; возможно подключение SATA -устройств в SAS-контроллеры
eSATA 3000 2 Да 1 (с умножителем портов до 15) 7 Host/Slave, горячая замена возможна

История прогресса накопителей

Рынок жёстких дисков

Последствия наводнения в Таиланде (2011)

В результате наводнения были затоплены несколько индустриальных зон, где расположены заводы по производству жёстких дисков, что по мнению экспертов, вызвало дефицит жёстких дисков на мировом рынке . По оценкам Piper Jaffray в IV квартале 2011 года дефицит жёстких дисков на мировом рынке составит 60-80 миллионов единиц при объёме спроса в 180 миллионов, по состоянию на 9 ноября 2011 года цены на жёсткие диски уже выросли в пределах от 10 до 60 %. К середине 2012 года уровень производства и цены винчестеров вернулись на прежний уровень.

См. также

Примечания

  1. Reference Guide - Hard Disk Drives (англ.) . - Обзор технологии жёстких дисков. Архивировано из первоисточника 23 августа 2011. Проверено 28 июля 2009.
  2. http://www.storagereview.com/guide/histEarly.html Reference Guide - Hard Disk Drives - Early Disk Drives (англ.)
  3. IBM Archives: IBM 3340 direct access storage facility
  4. Жёсткий диск или винчестер?
  5. Seagate представила жёсткий диск емкостью 4 Тб
  6. Medalist 545XE (англ.) . Seagate (17 августа 1994).(недоступная ссылка - история ) Проверено 8 декабря 2008. (недоступная ссылка - история )
    В спецификации диска Medalist 545xe (Seagate ST3660A) заявлены параметры: форматированный объём 545,5 Мб и геометрия 1057 цилиндров×16 головок×63 сектора×512 байт в секторе = 545 513 472 байт. Однако заявленный объём 545,5 из геометрии получается только если её поделить на 1000×1000; при делении на 1024×1024 получается значение 520,2.
    Barracuda 7200.9 320 GB PATA hard drive (ST3320833A) (англ.) . Seagate. - закладка Technical Specifications. Архивировано из первоисточника 23 августа 2011. Проверено 8 декабря 2008.
    Другой пример: заявлен объём 320 Гб и количество доступных секторов 625 142 448. Однако если количество секторов умножить на их размер (512), то в результате получится 320 072 933 376. «320» отсюда получаются только делением на 1000³, при делении на 1024³ получается только 298.
  7. База знаний Seagate. Стандарты измерения емкости запоминающего устройства (рус.)
  8. http://www.hitachigst.com/hdd/support/15k147/15k147.htm
  9. http://www.seagate.com/products/notebook/momentus.html (недоступная ссылка - история )
  10. Обзор Scythe Quiet Drive на thg.ru
  11. Toshiba: News Release 1 Oct, 2009
  12. Seagate завершает приобретения подразделения по производству жёстких дисков компании Samsung | Seagate
  13. Устройство жёсткого диска . R.LAB (23 июня 2010). Архивировано из первоисточника 3 февраля 2012.
  14. Разборки с винчестером (вникаем в суть жёстких дисков), части 1-3 / Публикации / hi-Tech
  15. Коллекция утилит для низкоуровневой диагностики и ремонта жёстких дисков . ???. Архивировано
  16. Утилита диагностики и ремонта жёстких дисков UDMA-3000 с модулями для множества моделей . ???. Архивировано из первоисточника 23 августа 2011. Проверено???.

Цель этой статьи — описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологией, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине - микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей - собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) — особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип - контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C. Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода, диск даже не пожелает раскручиваться. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство — ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Препаровочная зона — это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, препаровочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях, парковка производится на специальных пластиковых препаровочных площадках, расположенных за пределами пластин.

Жёсткий диск — механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом — удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача — ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе, второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок, образуют позиционер (actuator) — устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в препаровочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов, называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки — это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках, головки двигаются на расстоянии 5-10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель — это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине — сигнал, идущий с головок очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка — земля, ещё две — для элементов чтения и записи. Следующие две дорожки — для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, таким образом, уменьшая высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок — между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо — высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.