Введение в язык программирования Arduino. Arduino и совместимые языки программирования

14.09.2019 Фото и видео

В жизни ардуинщика рано или поздно наступает момент, когда в штатной среде разработки становится тесно. Если скетчам перестает хватать памяти, требуется жесткий реалтайм и работа с прерываниями или просто хочется быть ближе к железу - значит пришло время переходить на C. Бывалые электронщики при упоминании Arduino презрительно поморщатся и отправят новичка в радиомагазин за паяльником. Возможно, это не самый плохой совет, но мы пока не будем ему следовать. Если отбросить Arduino IDE и язык wiring/processing, у нас в руках останется прекрасная отладочная плата, уже оснащенная всем необходимым для работы микроконтроллера. И, что немаловажно, в память контроллера уже зашит бутлоадер, позволяющий загружать прошивку без использования программатора.

Для программирования на языке C нам понадобится AVR GCC Toolchain.

Также нам потребуется установленная Arduino IDE, т.к. она содержит утилиту avrdude, которая нужна для загрузки прошивки в контроллер. CrossPack тоже содержит avrdude, но версия, идущая с ним, не умеет работать с Arduino.

После того, как все установлено, создадим наш первый проект. Для начала напишем Makefile . Он позволит нам избежать ввода длинных команд вручную при каждой компиляции и загрузке прошивки.

#Контроллер, установленный на плате. Может быть другим, например atmega328 DEVICE = atmega168 #Тактовая частота 16 МГц CLOCK = 16000000 #Команда запуска avrdude. Ее нужно скопировать из Arduino IDE. AVRDUDE = /Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/bin/avrdude -C/Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/etc/avrdude.conf -carduino -P/dev/tty.usbserial-A600dAAQ -b19200 -D -p atmega168 OBJECTS = main.o COMPILE = avr-gcc -Wall -Os -DF_CPU=$(CLOCK) -mmcu=$(DEVICE) all: main.hex .c.o: $(COMPILE) -c $< -o $@ .S.o: $(COMPILE) -x assembler-with-cpp -c $< -o $@ .c.s: $(COMPILE) -S $< -o $@ flash: all $(AVRDUDE) -U flash:w:main.hex:i clean: rm -f main.hex main.elf $(OBJECTS) main.elf: $(OBJECTS) $(COMPILE) -o main.elf $(OBJECTS) main.hex: main.elf rm -f main.hex avr-objcopy -j .text -j .data -O ihex main.elf main.hex avr-size --format=avr --mcu=$(DEVICE) main.elf

В этом файле нам нужно вписать свою команду для запуска avrdude. На разных системах она будет выглядеть по разному. Чтобы узнать свой вариант, запускаем Arduino IDE и в настройках ставим галочку «Show verbose output during upload».

Теперь загружаем в Arduino любой скетч и смотрим сообщения, выводимые в нижней части окна. Находим там вызов avrdude, копируем все, кроме параметра -Uflash и вставляем в Makefile после «AVRDUDE = ».


Небольшое замечание: все отступы в Makefile делаются символами табуляции (клавишей Tab). Если ваш текстовый редактор заменяет эти символы пробелами, команда make откажется собирать проект.

Теперь создадим файл main.c - собственно текст нашей программы, в которой традиционно помигаем светодиодом.

#include #include #define LED_PIN 5 int main() { DDRB |= 1 << LED_PIN; while(1) { PORTB |= 1 << LED_PIN; _delay_ms(1000); PORTB &= ~(1 << LED_PIN); _delay_ms(1000); } return 0; }

Наш проект готов. Откроем консоль в директории нашего проекта и введем команду «make»:


Как видим, размер получившейся прошивки составляет всего 180 байт. Аналогичный ардуиновский скетч занимает 1116 байт в памяти контроллера.

Теперь вернемся к консоли и введем «make flash» чтобы загрузить скомпилированный файл в контроллер:


Если загрузка прошла без ошибок, то светодиод, подключенный к 13 контакту платы, радостно замигает. Иногда avrdude не может найти плату или отваливается по таймауту - в этом случае может помочь передегивание USB кабеля. Также, во избежание конфликтов доступа к плате, не забудьте закрыть Arduino IDE перед командой «make flash».

Возможно многие вещи, описанные в этой статье, покажутся очевидными матерым разработчикам. Я постарался описать процесс максимально понятным для начинающего ардуинщика языком и собрать в одном месте информацию, которую мне удалось добыть в различных источниках, и проверенную опытным путем. Может быть кому-то эта статья сэкономит пару часов времени.

Удачи в освоении микроконтроллеров!

Arduino — это готовая отладочная плата и очень простой язык для программирования, упрощающая начало работы с микроконтроллерами ценой размера и быстродействия программ. С недавних пор Atmel добавила поддержку бутлоадера Arduino в AVR Studio, то есть можно писать загружать без программатора программы написанные хоть на C, хоть на C++, хоть на Assembler. Более того — можно в AVR Studio писать код на языке Processing/Wiring.
Рекомендую начать чтение статьи с update’а в конце!
В этой статье мы предлагаем пошаговую инструкцию по установке ПО для программирования Arduino с использованием AVR Studio. За основу мы брали обзор расширений AVR Studio с сайта easyelectronics.ru . Все примеры мы будем запускать на нашей плате .

Установка Arduino IDE

Мы используем версию Arduino 1.5.2. Скачать ее можно на официальном сайте . Последняя версия (1.6.2-r2 на момент написания статьи) по каким-то причинам не работает с микроконтроллером Atmega8.
Вы скачаете zip-архив с уже развернутой средой. Останется только распаковать ее в директорию с программами.

Установка Atmel Studio

UPD

Я смотрю тема пользуется популярностью и я хочу прояснить несколько моментов.
Есть три способа, которые я пробовал, чтобы запрограммировать Arduino-совместимую плату на С:

  1. Писать прямо на в Arduino IDE на С. Надо понимать, что Processing/Wiring это не язык, а просто набор макросов и библиотек. Когда вы на нем пишите, то он смотрит в своих заголовочниках, преобразует ваш простой для человека код в С и затем компилирует стандартным компилятором AVR GCC. Если вы напишите код на С, то он не будет обращаться к своим либам и сразу все скомпилирует как надо, НО!… при этом линковщик добавит к вашему проекту все что ему заблагорассудится. Достоинства в том, что кроме Arduino IDE вам ничего не надо. Недостаток в магии, которая спрятана от разработчика. Этот метод часто используют в тех случаях, когда нужно реализовать функцию, которую наши итальянские друзья в своем языке не предусмотрели.
  2. Способ предложенный в этой статье (на самом деле самый странный, ибо совмещает все недостатки). Идеологически, этот extension нужен для того, чтобы программировать на Processing/Wiring и использовать в качестве интерфейса Atmel Studio. Еще есть платный функционал, позволяющий дебажить код, но его я не пробовал. Так вот, по сути при программировании происходит все то же самое, что и при первом варианте, но вы работаете в другой IDE. При этом с точки зрения результата получаете одно и то же. Если вы программировали Arduino, и решили сделать это на С — смело пишите прямо в Arduino IDE. Если не нравится интерфейс, то можно использовать нормальный редактор (рекомендую, Sublime Text). Если вы работаете в Atnel Studio и хотите прошивать вашу плату прямо из ее интерфейса или писать в нем на Processing/Wiring (вдруг!), то этот аддончик для вас. Кстати, студия работает только под виндой, то есть способ сразу не для всех. Эту статью я написал только потому, что нашел новый для себя способ, но он мне не нравится.
  3. Третий способ, как мне кажется, лучший для продвинутого пользователя. Сначала все происходит как обычно — пишешь код, компилируешь и получаешь hex-файл. Затем, помня что у тебя в руках обычная отладочная плата с бутлоадером, качаешь утилиту, которая к этому бутлоадеру мжет обратиться и передать в память ваш код. мы уже выкладывали пошаговую инструкцию. В этом случае разработчик получает максимальный контроль над всеми функциями, но могут возникнуть и проблемы из-за использования стороннего бутлоадера.

Хочется раскрыть еще один момент, который происходит в Arduino. Чтобы вы не делали, Arduino IDE обязательно будет сама включать периферию. Например, запустит таймеры. И если вы захотите с ними поработать на С, то можете обнаружить, что работают они не так, как вы ожидали. И это может стать настоящей проблемой. И таких примеров много, то есть много и потенциальных граблей, костылей и багов.
Если вы просто заливаете hex-файл, то проблемы могут возникнуть только из-за бутлоадера. Пока я нашел только одну — после завершения работы бутлоадера остается включен UART. Если вы пишете через Arduino IDE, то она в ваш код вставит его отключение и кто знает что еще. Если вы просто хотите запустить свой hex, то контроль за ногами UART’а вы не получите. Придется руками в свой проект добавить отключение UART. Подробно этот артефакт и примеры кода описаны в .
Ну, и в заключение. На большинстве Arduino-совместимых плат есть разъем для ISP-программатора. Если купить этот программатор у китайцев за 3-4 доллара вы быстро забудете про все эти проблемы.

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров .

Здравствуйте! Я Аликин Александр Сергеевич, педагог дополнительного образования, веду кружки «Робототехника» и «Радиотехника» в ЦДЮТТ г. Лабинска. Хотел бы немного рассказать об упрощенном способе программирования Arduino с помощью программы «ArduBloсk».

Эту программу я ввел в образовательный процесс и восхищен результатом, у детей она пользуется особым спросом, особенно при написании простейших программ или для создания какого-то начального этапа сложных программ. ArduBloсk является графической средой программирования, т. е. все действия выполняются с нарисованными картинками с подписанными действиями на русском языке, что в разы упрощает изучение платформы Arduino. Дети уже со 2-го класса с легкостью осваивают работу с Arduino благодаря этой программе.

Да, кто-то может сказать, что еще существует Scratch и он тоже очень простая графическая среда для программирования Arduino. Но Scratch не прошивает Arduino, а всего лишь управляет им по средством USB кабеля. Arduino зависим от компьютера и не может работать автономно. При создании собственных проектов автономность для Arduino - это главное, особенно при создании роботизированных устройств.

Даже всеми известные роботы LEGO, такие как NXT или EV3 нашим ученикам уже не так интересны с появлением в программировании Arduino программы ArduBloсk. Еще Arduino намного дешевле любых конструкторов LEGO и многие компоненты можно просто взять от старой бытовой электронной техники. Программа ArduBloсk поможет в работе не только начинающим, но и активным пользователям платформы Arduino.

Итак, что же такое ArduBloсk? Как я уже говорил, это графическая среда программирования. Практически полностью переведена на русский язык. Но в ArduBloсk изюминка не только это, но и то, что написанную нами программу ArduBloсk конвертирует в код Arduino IDE. Эта программа встраивается в среду программирования Arduino IDE, т. е. это плагин.

Ниже приведен пример мигающего светодиода и конвертированной программы в Arduino IDE. Вся работа с программой очень проста и разобраться в ней сможет любой школьник.

В результате работы на программе можно не только программировать Arduino, но и изучать непонятные нам команды в текстовом формате Arduino IDE, ну а если же «лень» писать стандартные команды - стоит быстрыми манипуляциями мышкой набросать простенькую программку в ArduBlok, а в Arduino IDE её отладить.

Чтобы установить ArduBlok, необходимо для начала загрузить и установить Arduino IDE с официального сайта Arduino и разобраться с настройками при работе с платой Arduino UNO. Как это сделать описано на том же сайте или же на Амперке , либо посмотреть на просторах YouTube. Ну, а когда со всем этим разобрались, необходимо скачать ArduBlok с официального сайта, вот . Последние версии скачивать не рекомендую, для начинающих они очень сложны, а вот версия от 2013-07-12 - самое то, этот файл там самый популярный.

Затем, скачанный файл переименовываем в ardublock-all и в папке «документы». Создаем следующие папки: Arduino > tools > ArduBlockTool > tool и в последнею кидаем скачанный и переименованный файл. ArduBlok работает на всех операционных системах, даже на Linux, проверял сам лично на XP, Win7, Win8, все примеры для Win7. Установка программы для всех систем одинакова.

Ну, а если проще, я приготовил на Mail-диске 7z архив , распаковав который найдете 2 папки. В одной уже рабочая программа Arduino IDE, а в другой папке содержимое необходимо отправить в папку документы.

Для того, чтобы работать в ArduBlok, необходимо запустить Arduino IDE. После чего заходим во вкладку Инструменты и там находим пункт ArduBlok, нажимаем на него - и вот она, цель наша.

Теперь давайте разберемся с интерфейсом программы. Как вы уже поняли, настроек в ней нет, а вот значков для программирования предостаточно и каждый из них несет за собой команду в текстовом формате Arduino IDE. В новых версиях значков еще больше, поэтому разобраться с ArduBlok последней версии сложно и некоторые из значков не переведены на русский.

В разделе «Управление» мы найдем разнообразные циклы.

В разделе «Порты» мы можем с вами управлять значениями портов, а также подключенными к ним звукоизлучателя, сервомашинки или ультразвукового датчика приближения.

В разделе «Числа/Константы» мы можем с вами выбрать цифровые значения или создать переменную, а вот то что ниже вряд ли будите использовать.

В разделе «Операторы» мы с вами найдем все необходимые операторы сравнения и вычисления.

В разделе «Утилиты» в основном используются значки со временем.

«TinkerKit Bloks»- это раздел для приобретенных датчиков комплекта TinkerKit. Такого комплекта у нас, конечно же, нет, но это не значит, что для других наборов значки не подойдут, даже наоборот - ребятам очень удобно использовать такие значки, как включения светодиода или кнопка. Эти знаки используются практически во всех программах. Но у них есть особенность - при их выборе стоят неверные значки обозначающие порты, поэтому их необходимо удалить и подставить значок из раздела «числа/константы» самый верхний в списке.

«DF Robot» - этот раздел используется при наличии указанных в нем датчиков, они иногда встречаются. И наш сегодняшний пример - не исключение, мы имеем «Регулируемый ИК выключатель» и «Датчик линии». «Датчик линии» отличается от того, что на картинке, так как он от фирмы Амперка. Действия их идентичны, но датчик от Амперки намного лучше, так как в нем имеется регулятор чувствительности.

«Seeedstudio Grove» - датчики этого раздела мной ни разу не использовались, хотя тут только джойстики. В новых версиях этот раздел расширен.

И последний раздел это «Linker Kit». Датчики, представленные в нем, мне не попадались.

Хочется показать пример программы на роботе, двигающемся по полосе. Робот очень прост, как в сборке, так и в приобретении, но обо всем по порядку. Начнем с его приобретения и сборки.

Вот сам набор деталей все было приобретено на сайте Амперка .

  1. AMP-B001 Motor Shield (2 канала, 2 А) 1 890 руб
  2. AMP-B017 Troyka Shield 1 690 руб
  3. AMP-X053 Батарейный отсек 3×2 AA 1 60 руб
  4. AMP-B018 Датчик линии цифровой 2 580 руб
  5. ROB0049 Двухколёсная платформа miniQ 1 1890 руб
  6. SEN0019 Инфракрасный датчик препятствий 1 390 руб
  7. FIT0032 Крепление для инфракрасного датчика препятствий 1 90 руб
  8. A000066 Arduino Uno 1 1150 руб

Для начала соберем колесную платформу и припаяем к двигателям провода.

Затем установим стойки, для крепления платы Arduino UNO, которые были взяты от старой материнской платы ну или иные подобные крепления.

Затем крепим на эти стойки плату Arduino UNO, но один болтик прикрутить не получиться - разъемы мешают. Можно, конечно, их выпаять, но это уже на ваше усмотрение.

Следующим крепим инфракрасный датчик препятствий на его специальное крепление. Обратите внимание, что регулятор чувствительности находиться сверху, это для удобства регулировки.

Теперь устанавливаем цифровые датчики линии, тут придется поискать пару болтиков и 4 гайки к ним Две гайки устанавливаем между самой платформой и датчиком линии, а остальными фиксируем датчики.

Следующим устанавливаем Motor Shield или по другому можно назвать драйвер двигателей. В нашем случае обратите внимание на джампер. Мы не будем использовать отдельное питание для двигателей, поэтому он установлен в этом положение. Нижняя часть заклеивается изолентой, это чтобы не было случайных замыканий от USB разъема Arduino UNO, это на всякий случай.

Сверху Motor Shield устанавливаем Troyka Shield. Он необходим для удобства соединения датчиков. Все используемые нами сенсоры цифровые, поэтому датчики линии подключены к 8 и 9 порту, как их еще называют пины, а инфракрасный датчик препятствий подключен к 12 порту. Обязательно обратите внимание, что нельзя использовать порты 4, 5, 6, 7 так как оны используются Motor Shield для управлением двигателями. Я эти порты даже специально закрасил красным маркером, чтобы ученики разобрались.

Если вы уже обратили внимание, мной была добавлена черная втулка, это на всякий случай, чтобы установленный нами батарейный отсек не вылетел. И наконец, всю конструкцию мы фиксируем обычной резинкой.

Подключения батарейного отсека может быть 2-х видов. Первый подключение проводов к Troyka Shield. Также возможно подпаять штекер питания и подключать уже к самой плате Arduino UNO.

Вот наш робот готов. Перед тем как начать программировать, надо будет изучить, как все работает, а именно:
- Моторы:
Порт 4 и 5 используются для управления одним мотором, а 6 и 7 другим;
Скоростью вращения двигателей мы регулируя ШИМом на портах 5 и 6;
Вперед или назад, подавая сигналы на порты 4 и 7.
- Датчики:
У нас все цифровые, поэтому дают логические сигналы в виде 1 либо 0;
А что бы их отрегулировать, в них предусмотрены специальные регуляторы а при помощи подходящей отвертки их можно откалибровать.

Подробности можно узнать на Амперке . Почему тут? Потому что там очень много информации по работе с Arduino.

Ну что ж, мы, пожалуй, все просмотрели поверхностно, изучили и конечно же собрали робота. Теперь его необходимо запрограммировать, вот она - долгожданная программа!

И программа конвертированная в Arduino IDE:

Void setup() { pinMode(8 , INPUT); pinMode(12 , INPUT); pinMode(9 , INPUT); pinMode(4 , OUTPUT); pinMode(7 , OUTPUT); pinMode(5, OUTPUT); pinMode(6, OUTPUT); } void loop() { if (digitalRead(12)) { if (digitalRead(8)) { if (digitalRead(9)) { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 50); digitalWrite(7 , LOW); } } else { if (digitalRead(9)) { digitalWrite(4 , LOW); analogWrite(5, 50); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } } } else { digitalWrite(4 , HIGH); analogWrite(5, 0); analogWrite(6, 0); digitalWrite(7 , HIGH); } }

В заключении хочу сказать, эта программа просто находка для образования, даже для самообучения она поможет изучить команды Arduino IDE. Самая главная изюминка - это то, что более 50 значков установки, она начинает «глючить». Да, действительно, это изюминка, так как постоянное программирование только на ArduBlok не обучит вас программированию в Arduino IDE. Так называемый «глюк» дает возможность задумываться и стараться запоминать команды для точной отладки программ.

Желаю успехов.

Начать свой путь в IT бывает очень сложно хотя бы просто потому, что глядя на окружающие технологии невозможно отделить «железный» интерес от программного. С одной стороны - желание создать устройство с безупречным внешним видом, множеством датчиков и безграничными возможностями, с другой - таинство обработки данных, стремление максимально увеличить быстродействие, не пренебрегая функциональностью. Arduino - первый шаг к большим изобретениям, не требующий ни глубоких знаний схемотехники, ни опыта в программировании.

Что такое Arduino

Если называть вещи своими именами, то Arduino - это конструктор для тех, кому надоело созидать бесполезные образы и захотелось хоть немного наделить их жизнью. В самом простейшем случае Arduino - печатная плата, на которой расположен контроллер, кварцевый генератор, АЦП/ЦАП, несколько разъёмов, диодов и кнопок. Остальное - дело рук хозяина: хотите - создавайте робота, хотите - программно-аппаратную платформу для «умного» дома, ну или забудьте про практическую пользу и развлекайтесь .

Конечно, в зависимости от того. насколько далеко вы хотите зайти в своих экспериментах, хотите ли вы получать фильтрованное удовольствие или сделать из Arduino платформу для собственного заработка, вам придётся совершенствоваться и в проектировании железа, и в изучении языков программирования. О последнем сегодня чуть подробнее.

Arduino достаточно ограниченная платформа в плане возможностей программирования, особенно в сравнении с Raspberry Pi. В силу того, что порог входа неприлично низкий (базовый Tutorial занимает 3 листа формата A4), то рассчитывать на изобилие языков без подключения дополнительных модулей не приходится. За основу здесь принят C/C++ , но с использованием различных IDE и библиотек вы получите доступ к оперированию Python, C#, Go, а также таким детским развлечениям, как Snap! и ArduBlock. О том как, когда и кому их использовать, поговорим далее.

C/C++

Базовый язык платформы Arduino, который с некоторыми доработками и упрощениями используется в стандартной программной оболочке. Найти все доступные команды «для новичка» можно , но никто не мешает вам воспользоваться исходными возможностями языка C++, никаких надстроек не потребуетс. Если же есть желание поиграть с «чистым» C, то к вашим услугам программа , предназначенная, как следует из названия, для взаимодействия ОС Windows и МК серии AVR, которые и используются на Arduino. Более подробное руководство можете прочитать вот .

Ardublock

Временно отойдем от языков взрослых к любимому ребятней языку Scratch, а вернее к его адаптации - Ardublock. Здесь всё тоже самое, но с адаптацией к вашей платформе: цветные блоки, конструктор, русские названия, простейшая логика. Такой вариант здорово подойдет даже тем, кто с программированием не знаком вовсе. Подобно тому, как в языке Logo вы можете перемещать виртуальную черепашку по виртуальной плоскости, здесь с помощью нехитрых операций вы можете заинтересовать ребенка реальной интерпретацией его программных действий.

Да, кстати, для использования необходимо на вашу стандартную среду Arduino IDE установить . Последние версии лучше не хватать, они довольно сложные, для начала подойдет датированная концом 2013 года. Для установки скачанный файл переименовываем в «ardublock-all» и запихиваем в папку «Мои документы/Arduino/tools/ArduBlockTool/tool». Если её не существует - создаем. Если что-то не поняли, то вот более подробно.

Snap!

По сравнению с Ardublock, Snap! имеет расширенные возможности в виде дополнительных блоков, возможности использования списков и функций. То есть Snap! в общем и целом уже похож на взрослый язык программирования, не считая, что вам по прежнему необходимо играть в конструктор кода.

Для того, чтобы использовать этот язык, придется сходить на сайт snap4arduino.org и скачать необходимые компоненты для вашей ОС. Инструкции по установке, использованию и видеопримеры ищите здесь же.

Python

Формально программировать на Arduino вы можете используя хоть язык Piet, просто потому что при должном упорстве вы скомпилируете в машинный код что угодно. Но в силу того, что Python - один из наиболее популярных языков с практически оптимальным сочетанием сложность\возможности, то обойти стороной его применяемость в Arduino было бы нелепо. Начать изучение Python вы можете с нашего бесплатного

Вам понадобится

  • - плата Arduino UNO,
  • - кабель USB (USB A - USB B),
  • - персональный компьютер,
  • - светодиод,
  • - резистор 220 Ом,
  • - пара проводов 5-10 см,
  • - при наличии - макетная плата (breadboard).

Инструкция

Загрузите среду разработки Arduino для своей операционной системы (поддерживаются ОС Windows, Mac OS X, Linux) на странице http://arduino.cc/en/Main/Software, можно установщик, можно . Скачанный файл содержит также и драйверы для плат Arduino.

Установите драйвер. Рассмотрим вариант для ОС Windows. Для этого дождитесь, когда операционная система предложит установить драйвер. Откажитесь. Нажмите Win + Pause, запустите Диспетчер устройств. Найдите раздел "Порты (COM & LPT)". Увидите там порт с названием "Arduino UNO (COMxx)". Кликните правой кнопкой мыши на нём и выберите "Обновить драйвер". Далее выбираете расположение драйвера, который вы только что скачали.

Среда разработки уже содержит в себе множество примеров для изучения работы платы. Откройте пример "Blink": Файл > Примеры > 01.Basics > Blink.

Укажите среде разработки свою плату. Для этого в меню Сервис > Плата выберите "Arduino UNO".

Выберите порт, которому назначена плата Arduino. Чтобы узнать, к какому порту подключена плата, запустите диспетчер устройств и найдите раздел Порты (COM & LPT). В скобках после названия платы будет указан порта. Если платы нет в списке, попробуйте её от компьютера и, выждав несколько секунд, снова.

Отключите плату от компьютера. Соберите схему, как показано на рисунке. Обратите внимание, что короткая ножка светодиода должна быть соединена с выводом GND, длинная через резистор с цифровым пином 13 платы Arduino. Удобнее пользоваться макетной , но при её отсутствии можно соединить провода скруткой.
Важное примечание! Цифровой пин 13 уже имеет свой резистор на плате. Поэтому при подключении светодиода к плате внешний резистор использовать не обязательно. При подключении светодиода к любым другим выводам Ардуино использование обязательно!

Теперь можно загрузить программу в память платы. Подключите плату к компьютеру, подождите несколько секунд, пока происходит инициализация платы. Нажмите кнопку "Загрузить", и Ваш запишется в память платы Arduino. Программирование под Arduino весьма интуитивно и совсем не сложно. Посмотрите на изображение - в комментариях к программе есть небольшие пояснения. Этого достаточно чтобы разобраться с вашим первым экспериментом.

Видео по теме

Обратите внимание

Будьте внимательны при работе с платой Arduino - это электронное изделие, которое требует бережного отношения. Снизу платы есть оголённые проводники, и если Вы положите плату на токопроводящую поверхность, есть вероятность сжечь плату. Также не трогайте плату влажными или мокрыми руками и избегайте при работе сырых помещений.

Полезный совет

В сети есть множество сайтов, посвящённых Arduino. Читайте, осваивайте, не бойтесь экспериментировать и познавать новое!

Источники:

  • Мигаем светодиодом

Программирование привлекает и интересует многих современных людей, в особенности - молодых и начинающих специалистов, которые только начинают выбирать будущую профессию. Они нередко встают перед вопросом - с чего начать в изучении программирования? Если вы решили научиться программировать, не стоит совершать распространенную ошибку - не беритесь сразу за сложные системы и языки (например, Си). Начав со слишком сложного языка, вы можете сформировать неправильное впечатление о программировании в целом. Начинающим рекомендуется работать с самыми простыми системами - например, учиться писать программы в Бейсик. Изучение этого языка позволит в короткие сроки добиться хороших результатов. Усвоить PureBasic несложно - этот универсальный компилируемый язык, имеющий широкие возможности, поможет вам понять основы программирования и совершенствовать свои умения в дальнейшем.

Инструкция

На изучение основ программирования у вас может уйти около года. Вам предстоит узнать особенности процедурного и объектно-ориентированного программирования, принципы работы с бинарными деревьями, массивами, списками и т.д. Только после изучения основ переходите к более сложным задачам.

Посещайте сайты разработчиков языков программирования, изучайте документацию. Обязательно общайтесь на форумах программистов, они, как правило, отвечают на большинство вопросов новичков.

Математика

Если вы хотите научиться программировать, вам просто необходимо знать математику. В процессе работы вам предстоит столкнуться с большим количеством проблем, которые невозможно будет решить без знания основ этой науки. Существует большое количество математических , систем и теорий (ряды Фурье, числа Фибоначчи и т.д.), которые значительно упрощают процесс программирования.

Обучение не заканчивается

Эволюция языков программирования не стоит на месте, их развитие идет постоянно. Старайтесь читать как можно больше литературы, посвященной той области программирования, в которой вы планируете работать. Всегда ищите альтернативные пути решения возникающих проблем, это поможет вам постоянно повышать эффективность работы создаваемого вами программного кода. Беседуйте с профессиональными программистами, они всегда смогут посоветовать, как справиться с той или иной проблемой. Чтение кодов их программ также принесет вам большую пользу.
Невозможно постоянно держать все в уме. Не стесняйтесь пользоваться справочниками по языкам программирования.

Задачи программирования, какими бы простыми они ни были, никогда не решаются с наскока. Они всегда требуют выработки правильного алгоритма действий, эффективного в данной конкретной ситуации. Поиск оптимальных алгоритмов требует постоянной практики и тренировки. Старайтесь чаще решать небольшие задачи по программированию (найти их можно на специализированных сайтах), это поможет вам постепенно оттачивать свои навыки в этой области.