Мобильная сотовая связь. Принципы организации сотовой связи

01.09.2019 Фото и видео

Основной принцип сотовой связи заключается в разделении всей зоны охвата телефонной связью на ячейки, называемые сотами. В центре каждой соты находится базовая станция (БС), поддерживающая связь с мобильными абонентами (сотовыми телефонами), находящимися в зоне её охвата. Базовые станции обычно располагают на крышах зданий и специальных вышках. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, диаметр которого не превышает 10-20 км. Соты частично перекрываются и вместе образуют сеть, которая для простоты обычно изображается в виде множества шестиугольных сот.

Каждая сота работает на своих частотах, не пересекающихся с соседними.

Все соты одного размера и объединены в группы по 7 сот. Каждая из букв (A, B, C, D, E, F, G) соответствует определённому диапазону частот, используемому в пределах одной соты. Соты с одинаковыми диапазонами частот разделены сотами, работающими на других частотах. Небольшие размеры сот обеспечивают ряд преимуществ по сравнению с традиционной наземной беспроводной связью, а именно:

· большое количество пользователей, которые одновременно могут работать в сети в разных частотных диапазонах (в разных сотах);

· небольшая мощность приемно-передающего оборудования, обусловленная небольшим размером сот (выходная мощность телефонных трубок составляет десятые доли ватт);

· меньшая стоимость устройств сотовой связи как маломощных устройств.

Если в какой-то соте количество пользователей оказывается слишком большим, то она может быть разбита на соты меньшего размера, называемые микросотами.

Базовая станция, в общем случае, содержит приёмопередатчик (ПП), поддерживающий связь с мобильными телефонами, и компьютер, реализующий протоколы беспроводной мобильной связи.

В небольших сетях все базовые станции соединены с коммутатором MSC (Mobile Switching Center – мобильный коммутационный центр) и имеют выход в телефонную сеть общего пользования (ТфОП), обеспечивающий связь мобильных телефонов со стационарными.

В больших сетях коммутаторы 1-го уровня (MSC) соединяются с коммутатором 2-го уровня и т.д., при этом все MSC имеют выход в ТфОП напрямую, либо через коммутатор более высокого уровня.

Связанные таким образом базовые станции и коммутаторы образуют сеть сотовой связи , административно подчиняющиеся одному оператору, предоставляющему услуги мобильной связи.

Базовые станции совместно с коммутационным оборудованием реализуют функции по определению текущего местоположения подвижных пользователей и обеспечивают непрерывность связи при перемещении пользователей из зоны действия одной БС в зону действия другой БС. При включении сотовый телефон ищет сигнал базовой станции и посылает станции свой уникальный идентификационный код. Телефон и БС поддерживают постоянный радиоконтакт, периодически обмениваясь служебными данными. При выходе телефона из зоны действия БС (или ослаблении радиосигнала) устанавливается связь с другой БС. Для этого базовая станция, фиксирующая ослабление сигнала, опрашивает все окружающие БС с целью выявить станцию, которая принимает наиболее мощный сигнал от мобильного телефона. Затем БС передаёт управление данным телефоном базовой станции той соты, в которую переместился мобильный телефон. После этого, телефону посылается информация о переходе в новую соту и предлагается переключиться на новую частоту, которая используется в этой соте. Этот процесс называется передачей и длится доли секунды.

Поколения мобильной сотовой связи. 1G, 2G, 2,5G, 3G, 3,5G, 4G.

Различают 4 поколения мобильной сотовой связи, обозначаемые как 1G, 2G, 3G, 4G. В то же время, между 2G и 3G, 3G и 4G выделяют промежуточные поколения, получившие обозначения 2.5G и 3.5G соответственно.

Эти поколения можно разбить на две группы:

· аналоговая связь (1G);

· цифровая связь (все остальные, начиная с 2G, различающиеся прежде всего предоставляемыми возможностями по передаче цифровых данных, а также скоростями передачи).

Поколение 1G

Первые сети мобильной сотовой связи поколения 1G появились в начале 80-х годов прошлого века и представляли собой аналоговые беспроводные сети, основной и, фактически, единственной функцией которых была передача речи со скоростями, не превышавшими 9,6 кбит/с.

Наиболее известными стандартами сотовой связи первого поколения являются AMPS и NMT.

Стандарт AMPS (Advanced Mobile Phone System) , использует частотное уплотнение, формируя 832 дуплексных канала, каждый из которых состоит из двух симплексных каналов шириной по 30 кГц, в диапазоне частот от 824 до 894 МГц. Радиус действия одной базовой станции от 10 до 20 км.

Стандарт NMT (Nordic Mobile Telephone system) , предписывает работу в диапазоне частот 453-458 МГц (NMT-450), используя до 180 каналов связи по 25 кГц каждый.

Радиус действия базовой станции в зависимости от нагрузки достигает 5-25 км. Модернизированная версия NMT-900, работающая на частоте 900 МГц, позволила уменьшить размеры телефонных аппаратов, а также добавить несколько новых сервисов.

Основной недостаток аналоговой беспроводной связи – отсутствие защиты от несанкционированного перехвата разговора.

В начале 90-х годов на смену аналоговой сотовой связи пришла цифровая связь, которая в настоящее время полностью её вытеснила.

Поколение 2G

Второе и последующие поколения мобильной сотовой связи относятся к цифровым сетям связи и, в отличие от первого поколения, предоставляют пользователям, кроме передачи речи, множество дополнительных видов услуг (сервисов).

Стандартами сотовой связи второго поколения являются D-AMPS, GSM, CDMA, в основе которых лежит метод мультиплексирования TDMA.

TDMA (Time Division Multiple Access) – множественный доступ с разделением по времени – метод мультиплексирования в беспроводной связи, при котором несколько пользователей для передачи данных используют разные временны е интервалы (слоты) в одном частотном диапазоне, при этом каждому пользователю предоставляется полный доступ к выделенной полосе частот в течение короткого периода времени.

Стандарт D-AMPS (Digital-AMPS) был разработан так, чтобы мобильные телефоны первого и второго поколений могли работать одновременно в одной и той же соте. Коммутатор может определять и динамически изменять тип канала (цифровой, аналоговый).

Наибольшее распространение среди перечисленных стандартов получили GSM (заменивший NMT) и CDMA.

GSM (Global System for Mobile Communications) – глобальная система мобильной связи, использующая частотное уплотнение. Каждая пара (для передачи в прямом и обратном направлении) частотных каналов разбивается с помощью временного уплотнения (TDMA) на кадровые интервалы, используемые несколькими абонентами. Каналы GSM имеют полосу пропускания в 200 кГц, что значительно шире каналов AMPS с полосой пропускания 30 кГц. Это обусловливает более высокие скорости передачи данных.

GSM, как и D-AMPS, использует частотное и временное уплотнение для разделения спектра на каналы и разделения каналов на временны е интервалы соответственно.

GSM обеспечивает поддержку следующих услуг:

· передача данных (синхронный и асинхронный обмен данными, в том числе пакетная передача данных - GPRS);

· передача речевой информации;

· передача коротких сообщений (SMS);

· передача факсимильных сообщений.

· определение вызывающего номера;

· переадресация вызовов на другой номер;

· ожидание и удержание вызова;

К основным достоинствам стандарта GSM следует отнести:

· меньшие по сравнению с аналоговыми стандартами размеры и вес телефонных аппаратов при большем времени работы без подзарядки аккумулятора;

· хорошее качество связи;

· возможность большого числа одновременных соединений;

· низкий уровень индустриальных помех в выделенных частотных диапазонах;

· защита от прослушивания и нелегального использования за счёт применения алгоритмов шифрования с разделяемым ключом.

Недостатками стандарта GSM являются:

· искажение речи при цифровой обработке и передаче;

· большее, чем в NMT-450, количество передатчиков, используемых для покрытия определённой площади.

В стандарте GSM определены 4 диапазона частот для передачи данных: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц, наиболее популярными среди которых являются 900 МГц (стандарт GSM-900) и 1800 МГц (GSM-1800). Соты могут иметь диаметр от 400 м до 50 км.

Основные отличия GSM-1800 от GSM-900:

· максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 (около 1 Вт) вдвое меньше, чем у GSM-900, что увеличивает время непрерывной работы без подзарядки аккумулятора и снижает уровень радиоизлучения;

· большая ёмкость сети;

· возможность совместного использования телефонных аппаратов стандартов GSM-900 и GSM-1800 в одной и той же сети;

· зона охвата для каждой базовой станции значительно меньше и, как следствие, необходимо большее число базовых станций.

В состав системы GSM, кроме мобильных сотовых телефонов, называемых в стандарте мобильными станциями (MS – Mobile Station), входят три подсистемы.

1. Подсистема базовых станций (BSS – Base Station Subsystem) состоит из собственно базовых станций и контроллеров базовых станций.

Базовая станция (BTS – Base Transceiver Station) обеспечивает приём/передачу сигнала между мобильной станцией и контроллером базовых станций.

Контроллер базовых станций (BSC – Base Station Controller) контролирует соединения между базовой станцией и подсистемой коммутации, а также управляет очерёдностью соединений, скоростью передачи, распределением радиоканалов, сбором статистики и переходом MS в другую соту.

2. Подсистема сетевой коммутации (NSS – Network Switching Subsystem) построена из следующих компонентов.

· центр коммутации;

· домашний реестр местоположения;

· гостевой реестр местоположения;

· реестр идентификации оборудования;

· центр аутентификации.

Центр коммутации (MSC – Mobile Switching Centre) реализует следующие функции:

· устанавливает соединения внутри сети GSM;

· обеспечивает интерфейс с ТфОП и другими сетями;

· выполняет маршрутизацию и управление вызовами;

· управляет передачей обслуживания при перемещении мобильной станции из одной соты в другую;

· постоянно отслеживает положение мобильной станции, используя данные из домашнего (HLR) и гостевого (VLR) реестров местоположения, что необходимо для быстрого нахождения и установления соединения с мобильной станцией в случае её вызова;

· собирает статистические данные;

· по завершению вызова передаёт данные в центр расчётов для формирования счета за предоставленные услуги.

Домашний реестр местоположения (HLR – Home Location Registry) содержит базу данных абонентов, приписанных к нему, с информацией о предоставляемых абоненту услугах и о состоянии каждого абонента, а также международный идентификатор мобильного абонента (IMSI – International Mobile Subscriber Identity), который используется для аутентификации абонента. Каждый абонент приписан к одному домашнему реестру. К домашнему реестру имеют доступ все центры коммутации и гостевые реестры данной GSM-сети, а в случае межсетевого роуминга и центры коммутации других сетей.

Гостевой реестр местоположения (VLR – Visitor Location Registry) содержит базу данных о перемещающихся абонентах, которые находятся в данный момент в этой зоне, в том числе об абонентах других систем GSM, называемых роумерами . Если абонент переместился в другую зону, данные о нём удаляются из гостевого реестра. Такая схема позволяет сократить количество запросов к домашнему реестру и, следовательно, время обработки вызова.

Реестр идентификации оборудования (EIR – Equipment Identification Registry) содержит базу данных, необходимую для установления подлинности мобильной станции по международному идентификатору мобильного устройства IMEI (International Mobile Equipment Identity) в виде трёх списков:

· белый – мобильная станция допущена к использованию;

· серый – имеются проблемы с идентификацией мобильной станции;

· чёрный - мобильная станция запрещена к использованию.

Центр аутентификации (AUC – Authentication Centre) осуществляет аутентификацию абонента по SIM-карте (Subscriber Identity Module). Для этого он посылает на мобильный телефон случайное число, которое шифруется параллельно в центре аутентификации и в мобильном телефоне с использованием специального алгоритма. Результаты шифрования возвращаются в центр коммутации, где они сравниваются. Если результаты шифрования совпадают, аутентификация считается успешной, и пользователь получает доступ к сети.

3. Центр технического обслуживания (OMC – Operations and Maintenance Centre) обеспечивает:

· управление всей сетью;

· контроль качества функционирования;

· обработку аварийных сигналов;

· проверку состояния сети и ряд других функций.

В сетях CDMA (Code Division Multiple Access) используется совершенно иной принцип передачи данных, подробно рассмотренный ниже. В отличие от GSM скорость передачи данных в CDMA может достигать 1,23 Мбит/с. Кроме того, существенным отличием является использование распределённого спектра, что усложняет обнаружение и идентификацию передаваемого сигнала и, соответственно, обеспечивает надёжную защиту от случайного подслушивания.

Поколение 2.5G

В процессе разработки принципов и стандартов третьего поколения мобильной сотовой связи появилось промежуточное поколение 2.5G, отличающееся от второго поколения большей ёмкостью сети и пакетной передачей данных. Поколение 2.5G реализовано в виде стандартов GPRS, EDGE и 1xRTT, наиболее распространённым среди которых является GPRS.

GPRS (General Packet Radio Service) – технология пакетной радиосвязи общего пользования, ориентированная на реализацию «мобильного Интернета».

GPRS использует базовые станции GSM для передачи данных в виде пакетов, что делает его внедрение достаточно простым и позволяет обеспечить доступ в Интернет. Пакеты передаются через свободные в данный момент каналы. Возможность использования сразу нескольких каналов обеспечивает достаточно высокие скорости передачи данных (до 171,2 кбит/c). Передача данных разделяется по направлениям: «вниз» (downlink, DL) – от сети к абоненту, и «вверх» (uplink, UL) – от абонента к сети. Один и тот же канал поочерёдно могут использовать несколько абонентов, при этом ресурсы канала предоставляются только на время передачи пакета, что приводит к появлению очереди на передачу пакетов и, как следствие, к увеличению задержки пакетов.

Принцип работы GPRS аналогичен Интернету: данные разбиваются на пакеты и отправляются получателю (возможно разными маршрутами), где происходит их сборка. При установлении сессии каждому устройству присваивается уникальный адрес. Пакеты могут иметь формат IP или X.25, при этом в качестве протоколов транспортного и прикладного уровней могут использоваться любые протоколы Интернета: TCP, UDP, HTTP и др.

Мобильный телефон в GPRS рассматривается как клиент внешней сети, которому присваивается постоянный или динамический IP-адрес.

Поколение 3G

Первые реализации третьего поколения сотовой связи появились в 2002 году. Существует три основных стандарта 3G:

· WCDMA (Wide CDMA).

Все они ориентированы на пакетную передачу данных и, соответственно, на работу с цифровыми компьютерными сетями, включая Интернет. Скорость передачи данных может достигать 2,4 Мбит/с что позволяет передавать качественный звук, а также реализовать «видеозвонок».

При необходимости сеть 3G может быть наложена на уже ранее развёрнутую сеть GSM или другую сеть второго поколения.

UMTS (Universal Mobile Telecommunications System – универсальная мобильная телекоммуникационная система) – технология сотовой связи третьего поколения, разработанная Европейским Институтом Стандартов Телекоммуникаций (ETSI) для внедрения Европе. UMTS поддерживает скорость передачи до 21 Мбит/с и позволяет пользователям проводить сеансы видеоконференций, загрузку музыкального и видео контента. UMTS обычно реализуется на основе технологий радиоинтерфейса, например W-CDMA. При переходе от GSM к UMTS сохраняется значительная часть прежней инфраструктуры. Основным отличием UMTS от GSM является возможность осуществлять стыки с сетями ISDN, Internet, GSM или другими сетями UMTS.

Для передачи данных от мобильного станции к базовой станции и обратно использует разные диапазоны частот: 1885 МГц – 2025 МГц и 110 МГц – 2200 МГц соответственно, причём оба канала имеют ширину 5 МГц (для сравнения CDMA2000 – 1,25 МГц).

К недостаткам UMTS-технологии следует отнести:

· относительно высокий вес мобильных терминалов наряду с низкой ёмкостью аккумуляторных батарей;

· сложность реализации перехода абонента из зоны действия одной базовой станции в зону действия другой без потери разговора (хэндовера) между сетями UMTS и GSM;

· небольшой радиус соты: 1-1,5 км.

В перспективе планируется эволюция UMTS в сети четвёртого поколения 4G, позволяющие базовым станциям передавать и принимать данные на скоростях 100 Мбит/с и 50 Мбит/с соответственно.

CDMA2000 представляет собой развитие технологии CDMA и обеспечивает скорость передачи данных до 153 кбит/с, что позволяет предоставлять услуги голосовой связи, передачу коротких сообщений, работу с электронной почтой, интернетом, базами данных, передачу данных и неподвижных изображений.

Основными достоинствами CDMA2000 являются:

· широкая зона обслуживания;

· высокое качество речи;

· гибкость и дешевизна внедрения новых услуг;

· высокая помехозащищённость;

· устойчивость канала связи от перехвата и прослушивания;

· низкая излучаемая мощность радиопередатчиков абонентских устройств - менее 250 мВт (для сравнения: в GSM-900 этот показатель составляет 2 Вт, а GSM-1800 – 1 Вт).

WCDMA (Wideband Code Division Multiple Access) – технология широкополосного множественного доступа с кодовым разделением каналов в диапазоне частот 1900 – 2100 МГц. Термин WCDMA также используется для стандарта сотовой сети, который разрабатывался как надстройка над GSM. WCDMA ориентирована на предоставление мультимедийных услуг, доступа в Интернет и видеоконференции со скоростями передачи данных:

· до 2 Мбит/с на коротких расстояниях;

· 384 кбит/с на больших расстояниях с полной мобильностью.

Такие скорости обеспечиваются за счёт широкой полосы частот канала в 5 МГц, что больше, чем в стандарте CDMA2000, использующем один или несколько каналов с полосой 1,25 МГц для каждого соединения.

Поколение 3.5G

Поколение 3.5G, как промежуточное поколение, характеризуется более высокими скоростями передачи данных по сравнению с 3-м поколением.

Начиная с 2006 года на сетях UMTS повсеместно распространяется технология HSDPA.

HSDPA (High Speed Downlink Packet Access – высокоскоростная пакетная передача данных от базовой станции к мобильной станции) – стандарт поколения 3.5G, представляющий собой модернизированный 3G со средней скоростью передачи данных 3 Мбит/с и максимальной – 14 Мбит/с.

Поколение 4G

Четвёртое поколение мобильных коммуникаций представляет собой эволюционное развитие 3G. Инфраструктура стандарта 4G базируется на IP-протоколе, что позволяет обеспечивать простой и быстрый доступ к Интернету. Высокие скорости передачи данных (100-200 Мбит/с) должны обеспечить передачу не только качественного звука, но и видео.

Планируется дальнейшее увеличение скорости передачи данных до 2,5 Гбит/с. Такие высокие скорости объясняются тем, что в четвёртом поколении используется только пакетная передача данных, включая голосовой трафик, передаваемый через протокол IP (мобильная VoIP-телефония). Помимо этого, сети 4G должны обеспечивать глобальный роуминг, связь корпоративных сетей, мобильное телевидение высокой чёткости.

В качестве стандарта 4G активно продвигается технология широкополосной беспроводной связи для быстрого доступа в Интернет с мобильных компьютеров WiMAX, описанная стандарте IEEE802.16.

WiMAX (Worldwide Interoperability for Microwave Access) – телекоммуникационная технология, предоставляющая высокоскоростной беспроводной доступ к сети на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов).

Скорости работы WiMAX-сетей будут достигать 75 Мбит/с и выше, что обеспечит не только доступ в Интернет, но и качественную передачу аудио- и видеоинформации, а также позволит использовать эту технологию в качестве «магистральных каналов».

Разработаны два стандарта технологии WiMAX – IEEE 802.16 d и IEEE 802.16 e, определяющие:

· рабочие диапазоны частот;

· ширину полосы пропускания;

· мощность излучения;

· методы передачи и доступа;

· способы кодирования и модуляции сигнала;

· принципы повторного использования радиочастот и другие показатели.

Стандарт IEEE 802.16 d , известный как фиксированный WiMAX и утверждённый в 2004 году, позволяет обслуживать только «статичных» абонентов, которые могут находиться как в зоне прямой видимости, так и вне зоны прямой видимости.

Стандарт IEEE 802.16 e , известный как мобильный WiMAX и утверждённый в 2005 году, ориентирован на работу с пользователями, передвигающимися со скоростью до 120 км/ч, и поддерживает ряд специфических функций, таких как хэндовер, режим ожидания (idle mode) и роуминг, что позволяет использовать его в сетях сотовой связи .

Возможна работа при отсутствии прямой видимости. Естественно, что мобильный WiMAX может применяться и для обслуживания фиксированных пользователей. Частотные диапазоны для сетей Mobile WiMAX расположены в интервале 2,3 - 3,8 ГГц.

Сети WiMAX состоят из следующих основных частей: базовых и абонентских станций, а также оборудования, связывающего базовые станции между собой, с поставщиком сервисов и с Интернетом. Для соединения базовой станции с абонентской используется диапазон частот от 1,5 ГГц до 11 ГГц. В идеальных условиях скорость обмена данными может достигать 70 Мбит/с, при этом не требуется наличия прямой видимости между базовой станцией и приёмником.

Конкурирующей по отношению к WiMAX является технология LTE.

LTE (Long Term Evolution) – технология мобильной передачи данных, предназначенная для повышения эффективности, снижения издержек, расширения оказываемых услуг путём интегрирования с существующими протоколами. Скорость передачи данных в соответствии со стандартом может достигать: 173 Мбит/с «вниз» (download) и 58 Мбит/с «вверх» (upload). Радиус действия базовой станции LTE зависит от мощности и используемых частот и составляет около 5 км, а при высоко расположенной антенне может достигать 100 км.

Важной проблемой в сетях 4-го поколения является поддержка высокой скорости передачи данных при перемещении мобильных станций с высокими скоростями, учитывая, что скорость передачи данных падает с увеличением скорости перемещения и с удалением от базовой станции.

Кроме того, необходимо обеспечить передачу управления мобильной станцией при её переходе с высокой скоростью (например, при движении в автомобиле или в поезде) из одной соты в другую без прерывания передачи данных и потери качества передаваемой информации.

Предполагается, что 4G станет единым стандартом, который заменит GSM, CDMA, UMTS и другие стандарты.

СОТОВАЯ СВЯЗЬ СОТОВАЯ СВЯЗЬ

СО́ТОВАЯ СВЯЗЬ (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства - мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) - соединены друг с другом с помощью сотовой сети - совокупности специальных приемопередатчиков (базовых станций). Базовые станции связываются друг с другом с помощью каналов фиксированной связи, а с обслуживаемыми мобильными телефонами - с помощью радиоволн. Область, где могут находится обслуживаемые отдельной базовой станцией мобильные телефоны, называется сотой (ячейкой, англ. cell). Один сотовый телефон обычно в каждый момент времени виден несколькими базовыми станциями, и, согласно используемым в сотовой сети стандартам и протоколам, связывается с той базовой станцией, которая имеет наименьшее ослабление сигнала (и при этом у этой станции не исчерпан лимит на число обслуживаемых телефонов). Таким образом, когда мобильный телефон перемещается вместе с использующим его человеком, и попадает в области видимости разных базовых станций, то его соединение с сотовой сетью не разрывается, и он может совершать и принимать звонки, а также пользоваться всеми услугами сотовой сети.
Компании, которые предоставляют доступ к сотовым сетям, называются операторами сотовой связи.
Мощность радиопередатчика мобильного телефона в сотовой сети гораздо меньше (в сотни раз) мощности передатчика базовой станции, поэтому мобильные телефоны имеют сравнительно небольшие размеры и безопасны в использовании. Уровень излучения мобильных телефонов регламентируются специальными международными стандартами безопасности. Существует множество стандартов и технологий мобильной связи.
Сети мобильной связи первого поколения
Первые сотовые сети были построены с использованием аналоговых стандартов - стандартов первого поколения (1G, first generation). Самые распространенные из них - NMT и AMPS. Обычно рядом с названием стандарта записывают частоту в мегагерцах, рядом с которой выделен частотный диапазон для взаимодействия базовой станции с мобильными телефонами, например базовые станции сетей NMT-450 общаются с сотовыми телефонами на частоте 450 МГц.
Сеть на основе стандарта NMT (Nordic Mobile Telephone) - первого стандарта сотовой связи - начала работать в странах Северной Европы в 1981. Также NMT был первым стандартом мобильной связи, используемым в России (1991) и в США.
В аналоговых стандартах для обеспечения одновременной работы нескольких мобильных телефонов в одной соте, а также базовых станций различных сот, использовалось только разделение каналов по частоте (FDMA, Frequency Division Multiple Access, одновременный доступ с разделением по частоте), что в условиях дефицита свободных частот означает работу в одной соте максимум только 10-20 телефонов и большие размеры сот. Это было приемлемо только при относительно низкой распространенности мобильной связи. Также аналоговые стандарты не давали никакой защиты от помех, а подслушать разговор иногда можно было с помощью простого радиоприемника.
В 2000-е гг. везде в мире сети первого поколения вытесняются сетями второго и третьего поколений.
Сети мобильной связи второго поколения
В сетях второго поколения (2G, second generation) данные между базовыми станциями и мобильными телефонами передаются в цифровом виде. Это позволило использовать в стандартах DAMPS и пришедшему ему на смену GSM для одновременной работы с одной базовой станции нескольких телефонов временное разделение (TDMA, Time Division Multiple Access, одновременный доступ с разделением по времени) - каждый частотный канал разделен на несколько так называемых «таймслотов», т. е. интервалов времени, в течение которых канал занимает один телефон. Таким образом, одна базовая станция может обслуживать до нескольких сотен телефонов одновременно. А мощности передатчиков в мобильных телефонах второго поколения были снижены, так как потери при передаче оцифрованного звука гораздо ниже.
В стандарте CDMA (Code Division Multiple Access, одновременный доступ с разделением по коду) используются более сложные методы разделения радиоэфира между различными мобильными телефонами. Причем, как много ни было бы разных телефонов в соте, и сколько бы базовых станций ни было бы соседями, каждый мобильный телефон использует для приема и передачи целую частотную полосу (канал) сравнительно большой ширины - 1,25 МГц в стандарте CDMA2000 1x. Чтобы различать сигналы разных телефонов и базовых станций, каждый передатчик имеет собственный код, который распространяется по всей ширине канала.
Самым популярным стандартом сотовой связи является именно стандарт второго поколения GSM - Global System for Mobile Communications (Глобальная система мобильной связи). Мобильными телефонами этого стандарта сейчас пользуются более миллиарда человек во всем мире.
Технологии передачи данных в сетях второго поколения
Но главным следствием перехода к цифровой форме сигнала стала возможность использовать мобильные телефоны для передачи не только голоса (звука), но и других видов информации. Первой подобной услугой, сделавшей возможным передачу текста между мобильными телефонами, был так называемый «сервис коротких сообщений» - Short Message Service (сокращенно SMS). SMS впервые появился в стандарте GSM (в декабре 1992 в сети британского оператора Vodaphone был произведен эксперимент по рассылке SMS), но позднее был реализован и в сетях на основе других стандартов. С помощью технологии SMS можно передавать не только короткие текстовые сообщения, но и простые картинки и звуки, а также выражать свои эмоции с помощью специальных изображений - смайликов (от smile - улыбка). Для этого используются технологии EMS и Nokia Smart Messaging.
Позднее, с совершенствованием мобильных телефонов и развитием компьютеризации, в сетях GSM были введены технологии для передачи компьютерных данных, доступа к сети Интернет (см. ИНТЕРНЕТ) . Первой такой технологией была CSD (Circuit Switched Data, передача данных через прямое подключение), в которой выделенный телефону таймслот используется для передачи данных со скоростью 9.6 килобит в секунду - таймслот выделяется точно так же, как и при совершении телефонных звонков. При этом телефон нельзя использовать по своему прямому назначению. Для увеличения скорости передачи была создана технология HSCSD (High Speed CSD, высокоскоростная CSD) - телефон получает несколько таймслотов сразу, также применяется специальный алгоритм для коррекции ошибок в зависимости от качества соединения. При использовании этой технологии в соте может не хватить таймслотов для всех мобильных телефонов, поэтому она не стала распространенной.
Самой распространенной технологией передачи данных является GPRS (General Packet Radio Service, служба пакетной радиопередачи данных общего пользования), которая позволяет использовать выделенные таймслоты сразу нескольким мобильным телефонам, использует различные алгоритмы при разном качестве связи с БС, различной загруженности БС. Каждый телефон использует различное количество таймслотов, освобождая их при отсутствии необходимости или запрашивая новые. Таймслоты делятся между телефонами с помощью пакетного разделения, как в компьютерных сетях. Количество таймслотов, которое может использовать телефон, ограничено аппаратно, и зависит от класса GPRS мобильного телефона. Скорость передачи асимметрична - если для получения информации телефон класса может использовать до 4-х таймслотов при 8-м и 10-м классах GPRS, то для передачи всего 1-2. Теоретический предел скорости для GPRS при идеальном соединении (21,4 килобит в секунду) и 5-и выделенных таймслотах составляет 107 килобит в секунду. Но реально средняя скорость работы GPRS находится на уровне 56 килобит в секунду. Мобильным телефонам при использовании технологии GPRS выделяются IP-адреса в Интернете, в большинстве случаев не уникальные.
Дальнейшим развитием технологии GPRS стала технология EDGE (Enhanced Data Rates for GSM Evolution, повышенная скорость передачи данных для развития GSM). В этой технологии, по сравнению с GPRS, применены новые схемы кодирования информации, а также изменен алгоритм обработки ошибок (ошибочно переданные пакеты не передаются заново, передается только информация для их восстановления). В результате, максимальная скорость передачи достигает 384 килобит в секунду.
Иногда технологию GPRS называют технологией мобильной связи «поколения 2,5» - 2.5G, а технологию EDGE - технологией 2.75G.
Для сетей CDMA2000 создана технология 1xRTT, позволяющая достигать скорости 144 килобит в секунду.
Назначение технологий передачи данных в сетях мобильной связи
Первоначально эти технологии использовались в мобильных телефонах для доступа в Интернет с помощью персональных компьютеров, и лишь затем, с дальнейшим развитием мобильных телефонов, предоставили доступ в Интернет непосредственно с мобильного телефона. Для получения информации на мобильный телефон использовалась технология WAP (Wireless Application Protocol, протокол для беспроводных приложений), которая предъявляла сравнительно небольшие требования к техническим характеристикам мобильного телефона. Странички создавались на специальном языке WML (Wireless Markup Language), приспособленном к особенностям мобильных телефонов - небольшому размеру экрана, только клавишному управлению, небольшим скоростям передачи данных, задержкам при загрузке страниц, и так далее. Более того, ввиду низкой производительности процессора и малого объема памяти мобильного телефона, для максимального облегчения работы мобильного браузера странички на этом языке обрабатывались не непосредственно, а с помощью промежуточного сервера (так называемого WAP-шлюза), который компилировал их в специальный байт-код, выполняемый мобильным телефоном. Именно за это - работу промежуточного сервера - операторы сотовой связи так высоко оценивают эту услугу.
Однако с совершенствованием мобильных телефонов вскоре произошли изменения. Во-первых, отпала необходимость в промежуточном сервере - теперь браузеры современных мобильных телефонов выполняют его работу самостоятельно. Во-вторых, на смену специализированному языку WML приходит стандарт xHTML - он отличается от повсеместно используемого в Интернете языка HTML только соблюдением некоторых специальных правил, а именно, спецификации XML. В-третьих, современные мобильные телефоны обладают вполне достаточным размером экрана для отображения обычных, предназначенных для компьютеров, страниц Интернета. В-четвертых, с развитием современного Интернета оказалось, что код HTML-страниц стал упрощаться и структурироваться, в связи с тем, что теперь он пишется преимущественно машинно. В связи с этими изменениями, многие современные телефоны вполне могут самостоятельно обрабатывать HTML.
На базе этих технологий передачи данных также были созданы дополнительные сервисы для мобильных телефонов - например, MMS(Multimedia Messaging System, система fпередачи мультимедийных сообщений). С помощью мобильного телефона теперь легко можно составить сообщение, содержащее текст, изображение, звук, видео или другие компьютерные файлы. Многие элементы MMS могут быть объединены в слайды, и принявший MMS телефон может показать презентацию, состоящую из них. Технически, когда отправляется MMS-сообщение, используется специализированный протокол передачи данных через обычное Интернет-соединение, например, через GPRS.
MMS-сообщения с мобильного телефона можно отправлять не только на другие мобильные телефоны, но и на адреса электронной почты - на электронный ящик придут все файлы, из которых состоит MMS. Каждое сообщение может быть отправлено сразу по нескольким адресам.
Если адресатом является номер другого мобильного телефона, поддерживающего MMS, то он напрямую закачивает содержимое сообщения по специальному протоколу, либо автоматически, либо по специальному запросу. А если принимающий сообщение мобильный телефон не поддерживает MMS, то он получает SMS-сообщение, содержащее ссылку в Интернете, перейдя по которой можно через Web посмотреть содержимое MMS либо с самого мобильного телефона, либо с персонального компьютера.
Однако большинство современных мобильных телефонов оснащено программами - клиентами электронной почты, и, по мере их совершенствования, MMS становится ненужным, вытесняется другими сервисами, например, BlackBerry.
Доступ в Интернет с мобильных телефонов может использоваться для тех же целей, что и в персональных компьютерах, например, для использования различных служб обмена сообщениями, вроде ICQ.
Мобильная связь третьего поколения
Скорости передачи данных в сетях второго поколения недостаточны для реализации многих новых задач мобильной связи, в частности, передачи высококачественного видео в реальном времени (видеофонии), современных фотореалистичных компьютерных игр через Интернет и других. Для обеспечения необходимых скоростей созданы новые стандарты и протоколы:
1. Стандарт UMTS (Universal Mobile Telecommunications System, универсальная система мобильной связи) на базе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный CDMA), частично совместимой с GSM. Скорость приема и передачи данных достигает 1920 килобит в секунду.
2. Технология 1xEV (evolution, развитие) для сетей CDMA2000. Скорость приема данных достигает 3,1 мегабит в секунду, а передачи - 1,8 мегабит в секунду.
3. Технологии TD-SCMA, HSDPA и HSUPA. Позволяют достичь еще более высоких скоростей. По состоянию на 2006 технологии W-CDMA предоставляют часто поддержку HSDPA. TD-SCMA разрабатываются.
Таким образом, современные технологии мобильной связи - это не столько технологии мобильной телефонии, сколько универсальные технологии передачи информации.


Энциклопедический словарь . 2009 .

Смотреть что такое "СОТОВАЯ СВЯЗЬ" в других словарях:

    Сотовая связь, сеть подвижной связи один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных … Википедия

    Один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично… … Словарь бизнес-терминов

    Сотовая связь третьего поколения - Сети сотовой связи третьего поколения (3rd Generation, или 3G) работают на частотах диапазона около 2 гигагерц и обеспечивают передачу данных на скорости до 2 мегабит в секунду. Такие характеристики позволяют использовать мобильный телефон, в… … Энциклопедия ньюсмейкеров

    ООО «Екатеринбург 2000» Тип Оператор сотовой связи Расположение … Википедия

    Статья содержит ошибки и/или опечатки. Необходимо проверить содержание статьи на соответствие грамматическим нормам русского языка … Википедия

    В Московском метрополитене работают сотовые телефоны стандарта GSM следующих сотовых операторов на следующих станциях. Содержание 1 «МТС» 2 «Билайн» 3 «МегаФон» … Википедия

    - … Википедия

    Сотовая связь один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты … Википедия

    Координаты: 56°49′53.36″ с. ш. 60°35′14.81″ в. д. / 56.831489° с. ш. 60.587447° в. д. … Википедия

Самым распространенным на сегодня видом мобильной связи является сотовая связь. Услуги сотовой связи предоставляются абонентам компаниями-операторами.

Беспроводную связь сотовому телефону предоставляет сеть базовых станций.

Каждая станция обеспечивает доступ к сети на ограниченной территории, площадь и конфигурация которой зависит от рельефа местности и других параметров. Перекрывающиеся зоны покрытия создают структуру, похожую на пчелиные соты; от этого образа и происходит термин «сотовая связь». При перемещении абонента его телефон обслуживается то одной, то другой базовой станцией, причем переключение (смена соты) происходит в автоматическом режиме, совершенно незаметно для абонента, и никак не влияет на качество связи. Такой подход позволяет, используя радиосигналы малой мощности покрывать сетью мобильной связи большие территории, что обеспечивает этому виду коммуникаций, помимо эффективности, еще и высокий уровень экологичности.

Компания-оператор не только технически обеспечивает мобильную связь, но и вступает в экономические взаимоотношения с абонентами, которые приобретают у нее некоторый набор основных и дополнительных услуг. Так как видов сервисов достаточно много, расценки на них объединяют в комплекты, именуемые тарифными планами. Вычислением стоимости оказанных каждому абоненту услуг занимается билинговая система (программно-аппаратная система, ведущая учет предоставленных абоненту услуг и сервисов).

Билинговая система оператора взаимодействует с аналогичными системами других компаний, например, предоставляющих абоненту услуги роуминга (возможность пользоваться мобильной связью в других городах и странах). Все взаиморасчеты за мобильную связь, в том числе и в роуминге, абонент производит со своим оператором, который является для него единым расчетным центром.

Роуминг – доступ к сервисам мобильной связи за пределами зоны покрытия сети «домашнего» оператора, с которым у абонента заключен контракт.

Находясь в роуминге, абонент обычно сохраняет свой телефонный номер, продолжает пользоваться своим сотовым телефоном, совершая и принимая звонки точно так же, как и в домашней сети. Все необходимые для этого действия, включая межоператорский обмен трафиком и привлечение по мере необходимости ресурсов других коммуникационных компаний (например, обеспечивающих трансконтинентальную связь), производятся автоматически и не требуют от абонента дополнительных действий. Если домашняя и гостевая сети предоставляют услуги связи в разных стандартах, роуминг все равно возможен: абоненту на время поездки могут выдать другой аппарат, при этом сохраняя его телефонный номер и автоматически маршрутизируя звонки.

История сотовой связи.

Работы по созданию гражданских систем мобильной связи начались в 1970-х. К этому моменту развитие обычных телефонных сетей в европейских странах достигло такого уровня, что следующим шагом в эволюции коммуникаций могла стать только доступность телефонной связи везде и всюду.

Сети на первом гражданском стандарте сотовой связи – NMT-450 – появились в 1981. Хотя наименование стандарта представляет собой сокращение слов Nordic Mobile Telephony («мобильная телефония северных стран»), первая на планете сотовая сеть была развернута в Саудовской Аравии. В Швеции, Норвегии, Финляндии (и других странах Северной Европы) сети NMT заработали на несколько месяцев позднее.

Через два года – в 1983 – на территории США была запущена первая сеть стандарта AMPS (Advanced Mobile Phone Service), созданного в исследовательском центре Bell Laboratories.

Стандарты NMT и AMPS, которые принято относить к первому поколению систем сотовой связи, предусматривали передачу данных в аналоговой форме, что не позволяло обеспечить должный уровень помехоустойчивости и защиты от несанкционированных подключений. Впоследствии у них появились усовершенствованные за счет использования цифровых технологий модификации, например, DAMPS (первая буква аббревиатуры своим появлением обязана слову Digital – «цифровой»).

Стандарты второго поколения (так называемого 2G) – GSM, IS-95, IMT-MC-450 и др., изначально созданные на основе цифровых технологий, превосходили стандарты первого поколения по качеству звука и защищенности, а также, как выяснилось впоследствии, по заложенному в стандарт потенциалу развития.

Уже в 1982 Европейская Конференция Администраций Почт и Электросвязи (CEPT) создала группу для разработки единого стандарта цифровой сотовой связи. Детищем этой группы стал GSM (Global System for Mobile Communications).

Первая сеть GSM была запущена в эксплуатацию в Германии в 1992. Сегодня GSM является господствующим стандартом сотовой связи как в России, так и во всем мире. В 2004 в нашей стране GSM-сети обслуживали свыше 90% абонентов сотовой связи; в мире GSM использовало 72% абонентов.

Для работы оборудования стандарта GSM выделено несколько диапазонов частот – на них указывают числа в названиях. В европейском регионе в основном используются GSM 900 и GSM 1800, в Америке – GSM 950 и GSM 1900 (на момент утверждения стандарта в США «европейские» частоты там оказались заняты другими службами).

Популярность стандарту GSM обеспечили его значимые для абонентов особенности:

– защищенность от помех, перехвата и «двойников»;

– наличие большого числа дополнительных сервисов;

– возможность при наличии «надстроек» (таких, как GPRS, EDGE и др.) обеспечивать передачу данных с высокими скоростями;

– присутствие на рынке большого количества телефонных аппаратов, работающих в сетях стандарта GSM;

– простота процедуры смены одного аппарата на другой.

В процессе развития сотовые сети стандарта GSM приобрели возможности расширения за счет некоторых «надстроек» над действующей инфраструктурой, обеспечивающих скоростную передачу данных. GSM-сети с поддержкой GPRS (General Packet Radio Service) получили название 2,5G, а GSM-сети с поддержкой стандарта EDGE (Enhanced Data rates for Global Evolution) иногда называют сетями 2,75G.

В конце 1990-х в Японии и Южной Корее появились сети третьего поколения (3G). Основное отличие стандартов, на которых построены сети 3G, от предшественников – расширенные возможности скоростной передачи данных, что позволяет реализовывать в таких сетях новые сервисы, в частности, видеотелефонию. В 2002–2003 первые коммерческие сети 3G начали работать и в некоторых странах Западной Европы.

Хотя в настоящее время сети 3G существуют лишь в ряде регионов мира, в инженерно-технических лабораториях крупнейших компаний уже ведутся работы по созданию стандартов сотовой связи четвертого поколения. Во главу угла при этом ставится не только дальнейшее увеличение скорости передачи данных, но и повышение эффективности использования пропускной способности частотных диапазонов, выделенных для мобильной связи, чтобы получать доступ к сервисам могло большое количество абонентов, находящихся на ограниченной территории (что особенно актуально для мегаполисов).

Другие системы мобильной связи.

Кроме сотовой связи, сегодня существуют и другие гражданские коммуникационные системы, также обеспечивающие мобильную связь по радиоканалам, но построенные на иных технических принципах и ориентированные на другие абонентские терминалы. Они менее распространены, чем сотовая связь, но находят применение, когда использование сотовых телефонов затруднено, невозможно или экономически невыгодно.

Становится все популярнее стандарт микросотовой связи DECT, который используется для коммуникаций на ограниченной территории. Базовая станция стандарта DECT способна обеспечивать трубкам (их может обслуживаться до 8 одновременно) связь между собой, переадресацию вызовов, а также выход в телефонную сеть общего пользования. Потенциал стандарта DECT позволяет обеспечивать мобильную связь в пределах городских микрорайонов, отдельных компаний или квартир. Они оказываются оптимальными в регионах с малоэтажной застройкой, абоненты которых нуждаются только в голосовой связи и могут обходиться без мобильной передачи данных и других дополнительных сервисов.

В спутниковой телефонии базовые станции располагают на спутниках, находящихся на околоземных орбитах. Спутники обеспечивают связь там, где развертывание обычной сотовой сети невозможно или нерентабельно (в море, на обширных малонаселенных территориях тундры, пустынь и т.д.).

Транкинговые сети, обеспечивающие абонентским терминалам (их принято называть не телефонами, а радиостанциями) связь в пределах определенной территории, представляют собой системы базовых станций (ретрансляторов), которые осуществляют передачу радиосигнала от одного терминала к другому при их значительном удалении друг от друга. Поскольку транкинговые сети обычно обеспечивают связь сотрудникам ведомств (МВД, МЧС, «Скорая помощь» и т.д.) или на технологических площадках большого размера (вдоль автотрасс, на стройке, на территории заводов и т.д.), то транкинговые терминалы не имеют развлекательных возможностей и дизайнерских изысков в оформлении.

Носимые радиостанции устанавливают связь друг с другом напрямую, без промежуточных коммуникационных систем. Мобильную связь такого типа предпочитают как государственные (милиция, пожарная охрана и т.д.) и ведомственные структуры (для коммуникаций в пределах складского комплекса, паркинга или стройки), так и частные лица (грибники, охотники-рыболовы или туристы), в ситуациях, когда проще и дешевле использовать для связи между собой карманные радиостанции, чем сотовые телефоны (например, в отдаленных районах, где отсутствует покрытие сотовых сетей).

Пейджинговая связь обеспечивает получение коротких сообщений на абонентские терминалы – пейджеры. В настоящее время пейджинговые коммуникации в гражданской связи практически не используются, из-за своих ограничений они вытеснены в область узкоспециализированных решений (например, служат для оповещения персонала в крупных медицинских учреждениях, передачи данных на информационные электронные табло и т.д.).

С 2004 все более широкое распространение получает новый подвид мобильной связи, предоставляющий возможность высокоскоростной передачи данных по радиоканалу (в большинстве случаев для этого используется протокол Wi-Fi). Зоны с Wi-Fi-покрытием, доступным для публичного использования (платного или бесплатного), называются хот-спотами. Абонентскими терминалами в этом случае являются компьютеры – как ноутбуки, так и КПК. Они могут обеспечивать и двустороннюю голосовую связь через Интернет, но эта возможность используется крайне редко, в основном соединение применяется для доступа к наиболее распространенным интернет-сервисам – электронной почте, веб-сайтам, системам мгновенного обмена сообщениями (например, ICQ) и т.д.

Куда движется мобильная связь.

В развитых регионах основным направлением развития мобильной связи на ближайшее будущее является конвергенция: обеспечение абонентским терминалам автоматического переключения с одной сети на другую с целью наиболее эффективного использования возможностей всех коммуникационных систем. Экономить средства абонентов и улучшать качество связи позволит автоматическое переключение, например, с GSM на DECT (и обратно), со спутниковой связи на «наземную», а при обеспечении беспроводной передачи данных – между GPRS, EDGE, Wi-Fi и другими стандартами, многие из которых (например, WiMAX) только ожидают своего часа.

Место мобильной связи в мировой экономике.

Коммуникации являются наиболее динамично развивающейся отраслью мировой экономики. Но мобильные коммуникации даже по сравнению с другими направлениями «телекома» развиваются опережающими темпами.

Еще в 2003 общее число мобильных телефонов на планете превысило количество стационарных аппаратов, подключенных к проводным сетям общего пользования. В некоторых странах количество абонентов мобильной связи уже в 2004 было больше числа жителей. Это означает, что некоторые люди использовали более одного «мобильного» – например, два сотовых телефона, обслуживаемых у разных операторов, или телефон для голосовой связи и беспроводной модем для мобильного доступа в Интернет. Кроме того, все больше модулей беспроводной связи требовалось для обеспечения технологических коммуникаций (в этих случаях абонентами являются не люди, а специализированные компьютеры).

В настоящее время операторы сотовой связи обеспечивают полное покрытие территории всех экономически развитых регионов планеты, однако экстенсивное развитие сетей продолжается. Новые базовые станции устанавливаются для улучшения приема в тех местах, где имеющаяся сеть по каким-либо причинам устойчивый прием обеспечить не может (например, в длинных тоннелях, на территории метрополитена и т.д.). Кроме того, сотовые сети постепенно проникают в регионы с низким уровнем доходов населения. Развитие технологий мобильной связи, сопровождающееся резким удешевлением оборудования и услуг, делает сотовые сервисы доступными все большему числу людей на планете.

Производство сотовых телефонов является одним из наиболее динамично развивающихся направлений индустрии высоких технологий.

Быстро растет и индустрия обслуживания мобильных телефонов, предлагающая аксессуары для персонификации аппаратов: от оригинальных звонков (рингтонов) до брелоков, графических заставок, наклеек на корпус, сменных панелей, чехлов и шнурков для ношения аппарата.

Виды телефонов.

Сотовый (мобильный) телефон – абонентский терминал, работающий в сотовой сети. По сути, каждый сотовый телефон является специализированным компьютером, который ориентирован, в первую очередь, на обеспечение (в зоне покрытия домашней или гостевой сети) голосового общения абонентов, но также поддерживает обмен текстовыми и мультимедийными сообщениями, снабжен модемом и упрощенным интерфейсом. Передачу голоса и данных современные мобильные телефоны обеспечивают в цифровой форме.

Раннее существовавшее разделение аппаратов на «недорогие», «функциональные», «бизнес-» и «имиджевые» модели все больше теряет смысл – бизнес-аппараты приобретают черты имиджевых моделей и развлекательные функции, в результате использования аксессуаров недорогие телефоны становятся имиджевыми, а у имиджевых быстро растет функциональность.

Миниатюризация трубок, пик которой пришелся на 1999–2000, завершилась по вполне объективным причинам: аппараты достигли оптимального размера, дальнейшее их уменьшение делает неудобным нажатие кнопок, чтение текста на экране и т.д. Зато сотовый телефон стал настоящим предметом искусства: к разработке внешнего вида аппаратов привлекают ведущих дизайнеров, а владельцам предоставляются широкие возможности персонифицировать свои аппараты самостоятельно.

В настоящее время производители уделяют особое внимание функциональности мобильных телефонов, причем как основным (увеличивается время автономной работы, улучшаются экраны и т.д.), так и дополнительным их возможностям (в аппараты встраивают цифровые фотокамеры, диктофоны, МР3-плееры и прочие «сопутствующие» устройства).

Практически все современные аппараты, за исключением некоторых моделей нижнего ценового диапазона, позволяют загружать программы. Большинство аппаратов может исполнять Java-приложения, увеличивается количество телефонов, использующих операционные системы, унаследованные от КПК или портированные с них: Symbian, Windows Mobile for Smartphones и т.д. Телефоны со встроенными операционными системами называют смартфонами (от комбинации английских слов «smart» и «phone» – «умный телефон»).

В качестве абонентских терминалов сегодня могут использоваться также коммуникаторы – карманные компьютеры, снабженные модулем с поддержкой GSM/GPRS, а иногда EDGE и стандартов третьего поколения.

Неголосовые сервисы сотовых сетей.

Абонентам сотовых сетей доступен целый ряд неголосовых сервисов, «ассортимент» которых зависит от возможностей конкретного телефона и от спектра предложений компании-оператора. Перечень сервисов в домашней сети может отличаться от списка услуг, доступных в роуминге.

Сервисы могут быть коммуникационными (обеспечивающими различные формы связи с другими людьми), информационными (например, сообщающими о прогнозе погоды или рыночных котировках), обеспечивающими доступ в Интернет, коммерческими (для оплаты с телефонов различных товаров и услуг), развлекательными (мобильные игры, викторины, казино и лотереи) и другими (сюда относится, например, мобильное позиционирование). Сегодня появляется все больше сервисов, находящихся «на стыке», например, большинство игр и лотерей являются платными, появляются игры, использующие технологии мобильного позиционирования, и т.д.

Практически всеми операторами и большинством современных аппаратов поддерживаются следующие сервисы:

– SMS – Short Message Service – передача коротких текстовых сообщений;

– MMS – Multimedia Messaging Service – передача мультимедиа-сообщений: фотографий, видеороликов и т.п.;

– автоматический роуминг;

– определение номера звонящего абонента;

– заказ и получение различных средств персонификации непосредственно по каналам сотовой связи;

– выход в Интернет и просмотр специализированных (WAP) сайтов;

– закачка рингтонов, картинок, информационных материалов со специализированных ресурсов;

– передача данных с помощью встроенного модема (она может осуществляться по различным протоколам в зависимости от того, какие технологии поддерживает конкретный аппарат).

Мобильная связь в России.

В СССР гражданских систем мобильной связи не было. С некоторой натяжкой «гражданской» можно назвать систему мобильной телефонии «Алтай», построенную на базе стандарта МРТ-1327, которая на рубеже 1970–80-х создавалась для обеспечения связью представителей партийного, государственного и хозяйственного руководства. «Алтай» успешно эксплуатируется и поныне. Разумеется, он не может конкурировать с сотовыми сетями, но находит применение для решения некоторых узкоспециализированных задач: обеспечения связью мобильных подразделений городских аварийных служб, телефонизации летних кафе и т.д.

Первые коммерческие сотовые сети, построенные по стандарту NMT, были созданы в России осенью 1991. Пионерами мобильной телефонии в нашей стране были компании «Дельта Телеком» (Санкт-Петербург) и «Московская сотовая связь». Первый звонок по сотовому телефону был сделан 9 сентября 1991 в Санкт-Петербурге: Анатолий Собчак, занимавший тогда пост мэра города, звонил своему коллеге – мэру Нью-Йорка.

В июле 1992 первые звонки были совершены в AMPS-сети «БиЛайн».

Первая российская сеть стандарта GSM, созданная компанией МТС, начала подключение абонентов в июле 1994.

В 2005 в России существуют три федеральных оператора сотовой связи, предоставляющих услуги в стандарте GSM: МТС, «БиЛайн» и «МегаФон». Спектр и качество предлагаемых ими телекоммуникационных услуг, а также расценки на них примерно одинаковы. К 2005 количество базовых станций в сетях ведущих столичных операторов в Москве и ближайшем Подмосковье составило около 3000, а площадь зоны покрытия превысила площади большинства европейских государств. Кроме них, существуют и вполне эффективно работают многочисленные локальные операторы – как дочерние структуры «большой тройки», так и самостоятельные компании.

Операторы активно развивают рынок, увеличивая покрытие своих сетей и популяризируя мобильную связь среди самых разных слоев населения. Если в середине 1990-х сотовый телефон был доступен только представителям самых обеспеченных слоев населения, то сегодня мобильной связью может пользоваться практически каждый. Российские операторы внедряют в своих сетях новейшие сервисы и предлагают построенные на их основе услуги, нередко даже опережая большинство европейских компаний. В настоящее время все три федеральных GSM-оператора ведут подготовительную работу к развертыванию коммерческих сетей третьего поколения.

Кроме GSM-сетей федеральных и локальных операторов сотовой связи в России продолжают эксплуатироваться сети других стандартов: DAMPS, IS-95, NMT-450, DECT и IMT-MC-450. Последний стандарт имеет статус федерального, и построенные на его базе сети (например, SkyLink) развиваются весьма активно. Однако ни по площади покрытия, ни по количеству обслуживаемых абонентов сети всех стандартов, отличных от GSM, заметную конкуренцию ведущей тройке федеральных операторов создать не могут.

Литература:

Маляревский А., Олевская Н. Ваш мобильный телефон (популярный самоучитель). М, «Питер», 2004
Закиров З.Г., Надеев А.Ф., Файзуллин Р.Р. Сотовая связь стандарта GSM. Современное состояние, переход к сетям третьего поколения («Библиотека МТС»). М., «Эко-Трендз», 2004
Попов В.И. Основы сотовой связи стандарта GSM («Инженерная энциклопедия ТЭК»). М., «Эко-Трендз», 2005



Мобильная связь - это радиосвязь между абонентами, местоположение одного или нескольких из которых меняется. Одним из видов мобильной связи является сотовая связь.

Сотовая связь - один из видов радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность: общая зона покрытия делится на соты, определяющиеся зонами покрытия базовых станций . Соты перекрываются и вместе образуют сеть. На идеальной поверхности зона покрытия одной базовой станции представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками .

Принцип действия сотовой связи

Итак, для начала рассмотрим, как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC - Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module) , по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.


Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI - International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56бит кодирование.

На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи.

Системы подвижной радиосвязи строятся по схеме "точка-многоточие" (point-multipoint), поскольку абонент может находиться в любой точке соты, контролируемой базовой станцией. В простейшем случае круговой передачи мощность радиосигнала в свободном пространстве теоретически уменьшается обратно пропорционально квадрату расстояния. Однако на практике сигнал затухает гораздо быстрее - в лучшем случае пропорционально кубу расстояния, поскольку энергия сигнала может поглощаться или уменьшаться на различных физических препятствиях, и характер таких процессов сильно зависит от частоты передачи. При уменьшении мощности на порядок охватываемая площадь соты уменьшается на два порядка.

"ФИЗИОЛОГИЯ"

Важнейшими причинами повышенного затухания сигналов являются теневые зоны, создаваемые зданиями или естественными возвышенностями на местности. Исследования условий применения подвижной радиосвязи в городах показали, что даже на очень близких расстояниях теневые зоны дают затухание до 20дБ. Другой важной причиной затухания является листва деревьев. Например, на частоте 836МГц в летнее время, когда деревья покрыты листвой, уровень принимаемого сигнала оказывается приблизительно на 10дБ ниже, чем в том же месте зимой, при отсутствии листьев. Замирания сигналов от теневых зон иногда называют медленными с точки зрения условий их приема в движении при пересечении такой зоны.

Важное явление, которое приходится учитывать при создании сотовых систем подвижной радиосвязи - отражение радиоволн, и, как следствие, их многолучевое распространение. С одной стороны, это явление полезно, так как оно позволяет радиоволнам огибать препятствия и распространяться за зданиями, в подземных гаражах и тоннелях. Но с другой стороны, многолучевое распространение порождает такие трудные для радиосвязи проблемы, как растягивание задержки сигнала, релеевские замирания и усугубление эффекта Доплера.

Растягивание задержки сигнала получается из-за того, что сигнал, проходящий по нескольким независимым путям разной протяженности, принимается несколько раз. Поэтому повторяющийся импульс может выйти за пределы отведенного для него интервала времени и исказить следующий символ. Искажения, возникающие за счет растянутой задержки, называются межсимвольной интерференцией. При небольших расстояниях растянутая задержка не опасна, но если соту окружают горы, задержка может растянуться на многие микросекунды (иногда 50-100 мкс).

Релеевские замирания вызываются случайными фазами, с которыми поступают отраженные сигналы. Если, например, прямой и отраженный сигналы принимаются и противофазе (со сдвигом фазы на 180°), то суммарный сигнал может быть ослаблен почти до нуля. Релеевские замирания для данного передатчика и заданной частоты представляют собой нечто вроде амплитудных "провалов", имеющих разную глубину и распределенных случайным образом. В этом случае при стационарном приемнике избежать замираний можно просто переставив антенну. При движении же транспортного средства такие "провалы" проходятся ежесекундно тысячами, отчего происходящие при этом замирания называются быстрыми.

Эффект Доплера проявляется при движении приемника относительно передатчика и состоит в изменении частоты принимаемого колебания. Подобно тому, как тон шума движущегося поезда или автомобиля кажется неподвижному наблюдателю несколько выше при приближении транспортного средства и несколько ниже при его удалении, частота радиопередачи смещается при движении приемопередатчика. Более того, при многолучевом распространении сигнала отдельные лучи могут давать смещение частоты в ту или другую сторону одновременно. В результате, за счет эффекта Доплера получается случайная частотная модуляция передаваемого сигнала подобно тому, как за счет релеевских замираний происходит случайная амплитудная модуляция. Таким образом, в целом многолучевое распространение создает большие трудности в организации сотовой связи, в особенности для подвижных абонентов, что связано с медленными и быстрыми замираниями амплитуды сигнала в движущемся приемнике. Преодолеть эти трудности удалось с помощью цифровой техники, которая позволила создать новые методы кодирования, модуляции и выравнивания характеристик каналов.

"АНАТОМИЯ"

Передача данных осуществляется по радиоканалам. Сеть GSM работает в диапазонах частот 900 или 1800 МГц. Более конкретно, например, в случае рассмотрения диапазона 900МГц подвижной абонентский аппарат передает на одной из частот, лежащих в диапазоне 890-915 МГц, а принимает на частоте, лежащей в диапазоне 935-960 МГц. Для других частот принцип тот же, изменяются только численные характеристики.

По аналогии со спутниковыми каналами направление передачи от абонентского аппарата к базовой станции называется восходящим (Rise), а направление от базовой станции к абонентскому аппарату - нисходящим (Fall). В дуплексном канале, состоящем из восходящего и нисходящего направлений передачи, для каждого из названных направлений применяются частоты, различающиеся точно на 45МГц. В каждом из указанных выше частотных диапазонов создаются по 124 радиоканала (124 для приема и 124 для передачи данных, разнесенных на 45МГц) шириной по 200кГц каждый. Этим каналам присваиваются номера (N) от 0 до 123. Тогда частоты восходящего (F R) и нисходящего (F F) направлений каждого из каналов можно вычислить по формулам: F R (N) = 890+0.2N (МГц), F F (N) = F R (N) + 45 (МГц).

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7), или восемь канальных интервалов.

Система с разделением частот (FDMA) позволяет получить 8 каналов по 25кГц, которые, в свою очередь, разделяются по принципу системы с разделением времени (TDMA) еще на 8 каналов. В GSM используется GMSK-модуляция, а несущая частота изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества.

Когда абонент получает канал, ему выделяется не только частотный канал, но и один из конкретных канальных интервалов, и он должен вести передачу в строго отведенном временном интервале, не выходя за его пределы - иначе будут создаваться помехи в других каналах. В соответствии с вышеизложенным работа передатчика происходит в виде отдельных импульсов, которые происходят в строго отведенном канальном интервале: продолжительность канального интервала составляет 577мкс, а всего цикла - 4616мкс. Выделение абоненту только одного из восьми канальных интервалов позволяет разделить во времени процесс передачи и приема путем сдвига канальных интервалов, выделяемых передатчикам подвижного аппарата и базовой станции. Базовая станция (BS) всегда передает на три канальных интервала раньше подвижного аппарата (HS).

Требования к характеристикам стандартного импульса описываются в виде нормативного шаблона изменения мощности излучения во времени. Процессы включения и выключения импульса, которые сопровождаются изменением мощности на 70дБ, должны укладываться в промежуток времени длительностью всего 28мкс, а рабочее время, в течение которого передаются 147 двоичных разрядов, составляет 542.8мкс. Значения мощности передачи, указанные в таблице ранее, относятся именно к мощности импульса. Средняя же мощность передатчика оказывается в восемь раз меньше, так как 7/8 времени передатчик не излучает.

Рассмотрим формат нормального стандартного импульса. Из него видно, что не все разряды несут полезную информацию: здесь в середине импульса располагается обучающая последовательность из 26 двоичных разрядов для защиты сигнала от помех многолучевого распространения. Это - одна из восьми специальных легко распознаваемых последовательностей, по которой принятые разряды правильно располагаются во времени. Такая последовательность ограждается одноразрядными указателями (PB - Point Bit), а с обеих сторон этой настроечной последовательности располагается полезная кодированная информация в виде двух блоков по 57 двоичных разрядов, ограждаемых, в свою очередь, граничными разрядами (BB - Border Bit) - по 3бит с каждой стороны. Таким образом, импульс переносит 148бит данных, которые занимают 546.12мкс временной интервал. К этому времени добавляется еще промежуток, равный 30.44мкс защитного времени (ST - Shield Time), в течение которого передатчик "молчит". По продолжительности этот промежуток соответствует времени передачи 8.25 разряда, но передачи в это время не происходит.

Последовательность импульсов образует физический канал передачи, который характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, существует еще ряд каналов, передающих сигналы управления. Реализация таких каналов и их работа требуют четкого управления, которое реализуется программными средствами.


В этой статье расскажем про историю появления мобильной связи

Первая система радиотелефонной связи появилась в 1946 году в США – Сент-Луисе. Радиотелефоны работали на фиксированных частотах и переключались вручную. В Советском Союзе радиотелефонная связь появилась в 1959 году и называлась системой «Алтай». Естественно, она была не общедоступной, а использовалась в качестве правительственной связи и спецслужбами. В 1990-1994 годах при развале СССР, из Советских НИИ, «бесплатно» вывозилась за кордон большая масса засекреченных разработок, в том числе и разработка многочастотной, многобазовой радиотелефонной связи. И в 1991 году в США, а в последствие и в Российской Федерации появился новый стандарт радиотелефонной – сотовой связи NMT-450 («Сотел»). Использовался аналоговый сигнал. В последствии появились цифровые стандарты – GSM-900 и GSM-1800.

С прогрессивным развитием сотовой связи мобильные телефонные аппараты стали широко доступны. Как правило, мобильный телефонный аппарат (далее МТА) может работать на расстоянии до 1500 м от базовой станции.

Как известно, каждому сотовому аппарату присваивается свой электронный серийный номер (ESN), который кодируется в микрочипе телефона при изготовлении телефона. Активируя SIM-карту (Subscriber Identity Module) - микрочип, в котором «прошит» абонентский номер, мобильный телефонный аппарат получает мобильный идентификационный номер (MIN).

Площадь, охватываемая сетью GSM (Global System for Mobile communications, - глобальная система мобильной связи), разбита на отдельные, прилегающие друг к другу ячейки (соты) - отсюда пошло название «сотовая связь», в центре которых находятся приемопередающие базовые станции. Обычно такая станция имеет шесть передатчиков, которые расположены с диаграммой направленности 120° и обеспечивают равномерное покрытие площади. Одна средняя современная станция одновременно может обслуживать до 1000 каналов. Площадь «соты» в городе составляет около 0,5-1 км 2 , вне города в зависимости от географического расположения она может достигать и 20, и 50 км 2 . Телефонный обмен в каждой «соте» управляется базовой станцией, которая принимает и передает сигналы в большом диапазоне радиочастот (выделенный канал - шаг для каждого сотового телефона минимальный). Базовая станция подключена к проводной телефонной сети и оснащена аппаратурой преобразования высокочастотного сигнала сотового телефона в низкочастотный сигнал проводного телефона и наоборот, чем обеспечивается сопряжение этих двух систем. Технически современная аппаратура базовой станции занимает площадь 1…3 м 2 и располагается в пределах одного небольшого помещения, где ее работа осуществляется в автоматическом режиме. Для стабильной работы такой станции необходимо лишь наличие проводной связи с телефонным узлом (АТС) и сетевое питание 220 В.

В городах и населенных пунктах с большим скоплением домов передатчики базовых станций располагаются прямо на крышах домов. В пригородах и на открытой местности используются вышки в несколько секций (их часто можно увидеть расположенными вдоль шоссе).

Зона покрытия соседних станций соприкасается. При передвижении телефонного аппарата между зонами покрытия соседних станций происходит его периодическая регистрация. Периодически, с интервалом 10…60 мин (в зависимости от оператора), базовая станция излучает служебный сигнал. Приняв его, мобильный телефон автоматически добавляет к нему свои MIN- и ESN-номера и передает получившуюся кодовую комбинацию на базовую станцию. Таким образом, осуществляется идентификация конкретного мобильного сотового телефонного аппарата, номера счета его владельца и привязка аппарата к определенной зоне, в которой он находится в данный момент времени. Этот момент весьма важен - уже на данном этапе можно контролировать передвижения того или иного объекта, а уж кому это выгодно, вопрос другой - главное есть возможность…

Когда пользователь соединяется с кем-либо по своему телефону, базовая станция выделяет ему одну из свободных частот той зоны, в которой он находится, вносит соответствующие изменения в его счет (производит списание средств) и передает его вызов по назначению.

Если мобильный пользователь во время разговора перемещается из одной зоны связи в другую, базовая станция покидаемой зоны (соты) автоматически переводит сигнал связи на свободную частоту соседней с ней зоны (соты).

Самыми уязвимыми с точки зрения возможности перехвата ведущихся переговоров (прослушивания) являются аналоговые мобильные сотовые телефоны. В нашем регионе (Санкт-Петербург) такой стандарт присутствовал до недавнего времени - это стандарт NMT450 (он присутствует также в Республике Беларусь). Уверенная связь и ее удаленность от базовой станции в таких системах напрямую зависят от мощности излучения передающего сотового телефона.

Аналоговый принцип передачи информации основан на излучении в эфир нецифрового радиосигнала, поэтому, настроившись на соответствующую частоту такого канала связи, теоретически можно прослушивать разговор. Однако стоит «остудить особо горячие головы»- прослушать переговоры сотовой связи данного стандарта не так-то просто, поскольку они шифруются (искажаются) и для точного распознавания речи нужен соответствующий дешифратор. Переговоры данного стандарта пеленговать проще, чем скажем, стандарта GSM- цифровой сотовой связи, мобильные телефоны которых передают и принимают информацию в виде цифрового кода. Легче всего пеленгуются стационарно расположенные или неподвижные объекты, осуществляющие сотовую связь, труднее - мобильные, т. к. перемещение абонента в процессе разговора сопровождается снижением мощности сигнала и переходом на другие частоты (при передачи сигнала от одной базовой станции к соседней).

Методы пеленгации

Приход в каждую семью сотовой связи (сегодня и школьники получают такие подарки), это реалии времени, комфорт становится уже незаменимым. Наличие у пользователя сотового телефона позволяет выявлять его местоположение, как в текущий момент времени, так и все его предыдущие перемещения до этого. Текущее положение может выявляться двумя способами.

Первый — метод целенаправленного пеленгования сотового телефона, определяющий направление на работающий передатчик из трех-шести точек и дающий засечку местоположения источника радиосигналов. Особенность такого метода в том, что он может применяться по чьему-либо распоряжению, например органов, уполномоченных по закону.

Второй метод - через оператора сотовой связи, который в автоматическом режиме постоянно регистрирует, где находится тот или иной абонент в данный момент времени даже в том случае, когда он не ведет никаких разговоров. Эта регистрация происходит автоматически по идентифицирующим служебным сигналам, автоматически передаваемым сотовым телефоном на базовую станцию (об этом шла речь ранее). Точность определения местонахождения абонента зависит от ряда факторов: топографии местности, наличия помех и отражения сигнала от зданий, от положения базовых станций и их загруженности (количества активных мобильных телефонов оператора в данной соте), размера соты. Отсюда, точность определения местонахождения абонента сотовой связи в городе заметно выше, чем в открытой местности, и может достигать пятна в несколько сотен метров. Анализ данных о сеансах связи абонента с различными базовыми станциями (с какой и на какую станцию подавался вызов, время вызова и тому подобное) позволяет восстановить картину всех перемещений абонента в прошлом. Данные автоматически регистрируются у оператора сотовой связи (для выписки счетов и не только…), поскольку оплата таких услуг основана на длительности использования системы связи. Эти данные могут храниться несколько лет, и это время пока не регламентируется федеральным законом, только ведомственными актами.
Можете сделать вывод – конфиденциальность обеспечивается, но не для всех. При необходимости прослушивания ваших переговоров, или определения вашего местоположения, практически любая «снаряженная» спецслужба, или преступное сообщество способны это сделать без каких либо усилий.

Труднее перехватить разговор, если он ведется с движущегося автомобиля, т.к. расстояние между пользователем сотового телефона и пеленгующей аппаратурой (если идет речь об аналоговой связи) постоянно изменяется и, если эти объекты удаляются друг от друга, особенно в пересеченной местности среди домов, сигнал ослабевает. При быстром перемещении сигнал переводится с одной базовой станции на другую, с одновременной сменой рабочей частоты - это затрудняет перехват всего разговора целиком (если он не ведется целенаправленно с участием оператора связи), поскольку для нахождения новой частоты требуется время.

Выводы из этого можно сделать самостоятельно. Отключайте свой сотовый телефон, если не желаете, чтобы ваше местонахождение стало известно.