Частотная модуляция: теория, временная и частотная области. Что такое модуляция и разновидности модулированных сигналов

09.08.2019 Фото и видео

Лекция № 12.

Частотная модуляция гармонической несущей .

Частотной модуляцией (ЧМ) называется процесс изменения частоты несущего колебания под воздействием модулирующего сигнала

,

где – коэффициент пропорциональности.

Коэффициент называется девиацией частоты (от лат. deviatio – отклонение) и она равна наибольшему отклонению частоты модулированного сигнала от значения частоты несущей . Изменение частоты ЧМ сигнала показана на рисунке, где отмечена девиация частоты , соответствующая наибольшему отклонению частоты вниз , поскольку .

Девиация частоты является одним из главных параметров частотных модуляторов и может принимать значения от единиц герц до сотен мегагерц в модуляторах различного назначения. Однако всегда необходимо, чтобы выполнялось условие .

Математическая модель ЧМ сигнала выглядит следующим образом

Поскольку входит в это выражение под знаком интеграла, ЧМ часто называют интегральным видом модуляции.

Фазовая модуляция гармонической несущей .

Фазовой модуляцией (ФМ) называется процесс отклонения (сдвига) фазы модулированного сигнала от линейной под воздействием модулирующего сигнала

где – коэффициент пропорциональности, который называется девиацией фазы . Физический смысл этого коэффициента поясняется на рисунке, где изображены модулирующий сигнал и полная фаза ФМ сигнала.

С увеличением сигнала полная фаза растет во времени быстрее, чем по линейному закону. При значениях сигнала происходит спад скорости . Абсолютная величина отклонения (сдвига) фазы от линейной наибольшая, когда достигает экстремальных значений. На рисунке отмечено максимальное отклонение фазы вверх и вниз . Наибольшее отклонение фазы от линейной и является девиацией фазы при ФМ. В примере, показанном на рисунке, . Девиация фазы измеряется в радианах и может принимать значение от единиц до десятков тысяч радиан.

Математическая модель ФМ сигнала выглядит следующим образом

Однотональные сигналы с угловой модуляцией .

При модуляции одним тоном аналитические выражения ЧМ и ФМ сигналов по форме записи имеют совершенно одинаковый вид

где – индекс модуляции . Отличие только в порядке вычисления индекса и фазы модулирующего колебания. При ЧМ индекс модуляции – отношение девиации частоты модулированного сигнала к частоте модулирующего гармонического сигнала , то есть . При ФМ индекс модуляции – величина, равная девиации фазы модулированного сигнала при гармоническом модулирующем сигнале , то есть .

Исходя из всего этого следует, что частотно – модулированный сигнал является в то же время и фазо ­ модулированным. Справедливо и обратное утверждение, поэтому ЧМ и ФМ в общем случае являются разновидностями угловой модуляии гармонической несущей.


При гармоническом модулирующем сигнале временные диаграммы ЧМ и ФМ имеют совершенно одинаковый вид. Отличить их можно, только сравнив изменение мгновенной фазы модулированного сигнала с законом изменения модулирующего колебания.

Спектр при угловой

модуляции .

Сигналы с угловой модуляцией, как и при АМ, могут быть представлены в виде суммы гармонических колебаний. Сравнительно просто это можно сделать при однотональной модуляции. Так как временные диаграммы ЧМ и ФМ сигналов практически одинаковы, то и спектры их будут также совпадать при условии, что . Для построения спектра сигналов с угловой модуляцией используют следующую формулу:

,

где – функция Бесселя -го порядка от аргумента .

В отличии от АМ сигналов, спектр даже для однотональной угловой модуляции является сложным . Этот спектр в себе состоит из: гармонической составляющей с частотой несущей , верхней боковой полосы частот – группы гармонических составляющих с частотами и нижней боковой полосы частот – группы гармонических составляющих с частотами . Число верхних и нижних боковых частот теоретически бесконечно. Боковые гармонические колебания расположены симметрично относительно на расстоянии . Амплитуды всех компонент спектра, в том числе и с частотой , пропорциональны .

Для детального анализа и построения спектральных диаграмм необходимо знание функций Бесселя при различных значениях и . Их можно найти в математических справочниках.

Графики функций Бесселя.

На этом рисунке приведены графики функций Бесселя при , .

Поскольку количество спектральных составляющих спектра угловых модуляций теоретически равно бесконечности, то нужно определиться с тем, сколько их взять для построения спектральной диаграммы. Все зависит от того, составляющие с какими значениями амплитуд отбрасываем. В практике считают, что можно пренебречь всеми спектральными составляющими, номера которых (уровень меньше 5% от уровня несущей). Из этого следует, что ширина спектра сигналов с угловой модуляцией

,

где – частота модулирующего сигнала. Для передачи модулированного сигнала с высокой точностью иногда считают, что надо учитывать спектральные составляющие с уровнем не менее 1% от уровне несущей. Тогда, ширина спектра с угловой модуляцией

Если , то угловая модуляция считается узкополосной и ее ширина спектра соизмерима с шириной спектра амплитудной модуляции. Если же , то угловая модуляция является широкополосной и ее ширина полосы частот примерно равна удвоенной девиации частоты.

Угловые модуляции, особенно широкополосные, обладают большей помехоустойчивостью, чем амплитудная модуляция, поэтому и они находят применение в системах связи для качественной передачи сообщений. Однако при этом значительно расширяется полоса частот модулированного сигнала.

Например, задано аналитическое выражение модулированного сигнала . Спектральная диаграмма в этом случае будет выглядеть следующим образом

Спектральная диаграмма сигналов с однотональной угловой модуляцией при .

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

Системы с частотной модуляцией обладают высокой помехоустойчивостью, поэтому их применяют для высокочастотного радиовещания на ультразвуковых волнах, для передачи сигналов звукового сопровождения телевидения, в радиорелейных и спутниковых линиях связи, а также для передачи телеграфных и фототелеграфных сигналов.

Если модуляция производится одним синусоидальным тоном, то выражение для частотномодулированного колебания имеет вид

где – амплитуда высокочастотного колебания;

– значение высокой (несущей) частоты до модуляции;

– частоты модулирующего напряжения;

– индекс частотной модуляции, определяемый из выражения

, (2.5)

где – отклонение высокой частоты при модуляции – девиация частоты.

Мгновенное значение частоты частотномодулированного сигнала будет .

Девиация частоты при модуляции пропорциональна только амплитуде модулирующего напряжения и не зависит от его частоты:

На рисунке 2 приведен график частотномодулированного колебания, соответствующий выражению (2.4). Частота модулирующего колебания определяет скорость изменения мгновенного значения девиации , ( – максимальная девиация).

Рисунок 3 – График частотно-модулированного колебания

В практике радиоизмерений, особенно в условиях эксплуатации, определяется девиация частоты ; индекс частотной модуляции при модуляции одной частотой определяется по формуле (2.5). Для точных измерений частотно-модулированных колебаний при настройке передающих и калибровке измерительных устройств определяется индекс частотной модуляции , а по формуле (2.5) – девиация частоты .

Измерение девиации частоты

Наиболее просто девиацию частоты измерять методом частотного детектора. Сущность его состоит в том, что частотно-модулированные колебания преобразуются в амплитудно-модулированные, а затем детектируются амплитудным детектором, в результате чего получается напряжение, пропорциональное напряжению модулирующей частоты. Это напряжение измеряется пиковым вольтметром, включенным на выходе амплитудного детектора. Как следует из выражения (2.6), шкалу пикового вольтметра можно проградуировать непосредственно в единицах отклонения частоты – килогерцах. Частотно-модулированные колебания преобразуются в колебания низкой частоты частотным детектором (см. рисунок 4), характеристика которого имеет вид S-образной кривой. Детали частотного детектора, в особенности колебательные контуры, должны быть особо высокого качества, так как малейшее изменение их параметров во времени вызывает значительную погрешность измерений.

Рисунок 4 – Схема частотного детектора

Блок-схема прибора для измерения девиации методом частотного детектора приведена на рисунке 4. Прибор представляет собой, по существу, калиброванный высокочастотный приемник частотно-модулированных колебаний с измерительными приборами для непосредственного считывания нужных величин. Модулированный сигнал преобразуется в промежуточную частоту, усиливается, ограничивается и поступает на частотный детектор, выходное напряжение которого пропорционально девиации частоты; результат детектирования проходит через фильтр нижних частот, усиливается и измеряется пиковым вольтметром. Шкала последнего проградуирована в единицах девиации – килогерцах. При помощи внутреннего калибратора проверяются частотный детектор и вся измерительная часть прибора. Погрешность измерения составляет .

Рисунок 5 – Блок-схема измерителя девиации частоты

Задание: определить действительное значение девиации частоты, учитывая погрешность измерения и показания пикового вольтметра, шкала которого проградуирована в единицах девиации – килогерцах.

Например, на РРЛ с частотным уплотнением многоканальное сообщение передается с помощью частотной модуляции передатчика. Для осуществления соединения РРЛ необходимо чтобы девиация частоты была одинакова, т.е для различного числа каналов МККР указывает величину эффективной девиации частоты. При этом измерительный уровень и .

Обычно определяют верхний предел средней мощности многоканального сообщения и рассчитывают эффективную величину девиации частоты.

Таблица 9 Эффективное значение девиации частоты на канал , кГц

Загрузка одного телефонного канала с уровнем создает эффективную девиацию частоты на один канал

Например, эффективная величина девиации частоты приходящаяся на один канал, при 240>N >100 .

Таблица 10

При сравнении измеренной величины с учетом погрешности с расчетной сделать вывод о соответствии рекомендациям МККР.

Хотя менее и интуитивно понятная, чем амплитудная модуляция, частотная модуляция (ЧМ, англ. FM) по-прежнему является довольно простым способом беспроводной передачи данных.

Мы все, по крайней мере, смутно знакомы с частотной модуляцией - это источник термина «FM радио». Если мы считаем частоту тем, что имеет мгновенное значение, а не как нечто, состоящее из нескольких периодов сигнала, деленных на соответствующий период времени, мы можем непрерывно изменять частоту в соответствии с мгновенной величиной низкочастотного сигнала.

Математика

В первой статье данной главы мы обсудили парадоксальную величину, называемую мгновенной частотой. Если вы считаете этот термин незнакомым или запутанным, вернитесь на эту страницу и прочитайте раздел «Частотная модуляция (ЧМ, англ. FM) и фазовая модуляция (ФМ, англ. PM)». Тем не менее, вы всё еще можете быть немного запутаны, и это понятно: идея мгновенной частоты нарушает основной принцип, согласно которому «частота» указывает, как часто сигнал завершает полный цикл: десять раз в секунду, миллион раз в секунду или сколько бы то ни было раз.

Мы не будем пытаться заниматься каким-либо тщательным или всесторонним рассмотрением мгновенной частоты в качестве математической концепции. (Если вы намерены подробно изучить эту проблему, вот академический документ , который должен помочь.) В контексте FM важно понять, что мгновенная частота естественно вытекает из того, что частота сигнала несущей изменяется непрерывно в ответ на модулирующую волну (т.е. низкочастотный сигнал). Мгновенное значение модулирующего сигнала влияет на частоту в определенный момент, а не на частоту одного или нескольких полных циклов.

На самом деле это верно только для аналоговой частотной модуляции; в цифровой ЧМ один бит соответствует дискретному числу циклов. Это приводит к интересной ситуации, когда более старая технология (аналоговая ЧМ) менее интуитивно понятна, чем более новая технология (цифровая частотная модуляция, также называемая частотной манипуляцией или FSK (Frequency Shift Keying)).

Вам не нужно размышлять над мгновенной частотой, чтобы понимать цифровую частотную модуляцию

Как и в предыдущей статье мы будем обозначать несущую как sin(ω нес t) . У нее уже есть частота (а именно, ω нес), поэтому мы должны использовать термин «дополнительное отклонение частоты » для обозначения частотной составляющей, внесенной процедурой модуляции. Этот термин несколько вводит в заблуждение, поскольку «дополнительное» подразумевает более высокую частоту, тогда как модуляция может приводить к несущей частоте, которая выше или ниже номинальной несущей частоты. Фактически поэтому частотная модуляция (в отличие от амплитудной модуляции) не требует смещенного низкочастотного сигнала: положительные значения низкочастотного сигнала увеличивают частоту несущей, а отрицательные значения низкочастотного сигнала уменьшают частоту несущей. В этих условиях демодуляция не является проблемой, поскольку все значения низкочастотного сигнала соответствуют уникальным частотам.

В любом случае, вернемся к нашему сигналу несущей: sin(ω нес t) . Если мы добавим низкочастотный сигнал (x нч) к величине внутри круглых скобок, мы получим отклонение фазы , линейно пропорциональное низкочастотному сигналу. Но нам нужна частотная модуляция, а не фазовая, поэтому мы хотим, чтобы линейно пропорционально низкочастотному сигналу было отклонение частоты . Из первой статьи данной главы мы знаем, что мы можем получить частоту, взяв производную фазы по времени. Таким образом, если мы хотим, чтобы частота была пропорциональна x нч, мы должны добавить не сам низкочастотный сигнал, а скорее интеграл от низкочастотного сигнала (поскольку взятие производной отменяет интеграл, у нас остается x нч как отклонение частоты).

Единственное, что нам нужно здесь добавить, это индекс модуляции m. В предыдущей статье мы увидели, что индекс модуляции можно использовать для того, чтобы изменения амплитуды несущей были более или менее чувствительны к изменениям амплитуды низкочастотного сигнала. Его функция в FM аналогична: индекс модуляции позволяет нам точно настраивать интенсивность изменения частоты, которое возникает при изменении амплитуды низкочастотного сигнала.

Временна́я область

Давайте посмотрим на несколько сигналов во временной области. Ниже показана наша несущая 10 МГц:

Низкочастотным модулирующим сигналом будет синусоида 1 МГц, показанная ниже:

Частотно-модулированный сигнал генерируется с помощью формулы, приведенной выше. Интеграл от sin(x) равен -cos(x) + C . Константа C здесь не важна, поэтому для вычисления FM сигнала мы можем использовать следующую формулу:

Результат показан ниже (красным показан низкочастотный модулирующий сигнал):

Похоже, что несущая не изменилась, но если присмотреться, пики немного ближе друг к другу, когда низкочастотный модулирующий сигнала приближается к своему максимальному значению. Итак, у нас есть частотная модуляция; но проблема заключается в том, что изменения модулирующего сигнала не создают достаточного изменения частоты несущей. Мы можем легко исправить эту ситуацию, увеличив индекс модуляции. Используем m =4.

Частотная модуляция (m =4)

Теперь мы можем более четко видеть, как частота модулированной несущей непрерывно следует за мгновенным значением амплитуды низкочастотного модулирующего сигнала.

Частотная область

Формы AM и FM сигналов при одинаковых сигнале несущей и низкочастотном модулирующем сигнале выглядят совершенно по-разному. Поэтому интересно обнаружить, что AM и узкополосная FM дают аналогичные изменения в частотной области. (Узкополосная частотная модуляция предусматривает ограниченную полосу модулирующего сигнала и позволяет упростить анализ.) В обоих случая низкочастотный спектр (включая отрицательные частоты) переносится в полосу, которая простирается выше и ниже несущей частоты. В AM спектр самого низкочастотного модулирующего сигнала сдвигается вверх. В FM это спектр интеграла низкочастотного модулирующего сигнала, который появляется в полосе, окружающей несущую частоту.

Для модуляции, показанной выше, с m=1 мы получаем следующий спектр:

Следующий спектр соответствует m=4:

Это очень ясно показывает, что индекс модуляции влияет на частотные составляющие частотно-модулированного сигнала. Спектральный анализ частотной модуляции сложнее, чем для амплитудной модуляции; поэтому для частотно-модулированных сигналов трудно предсказать ширину полосы частот.

Резюме

  • Математическое представление частотной модуляции состоит из синусоидального выражения с интегралом низкочастотного модулирующего сигнала, добавленного к аргументу функции синуса или косинуса.
  • Индекс модуляции может использоваться, чтобы сделать отклонение частоты более чувствительным или менее чувствительным к изменениям амплитуды низкочастотного модулирующего сигнала.
  • Узкополосная частотная модуляция приводит к переносу спектра интеграла низкочастотного модулирующего сигнала в полосу, окружающую несущую частоту.
  • На спектр ЧМ влияет индекс модуляции, а также отношение амплитуды модулирующего сигнала к частоте модулирующего сигнала.

При ЧМ в соответствии с модулирующим сигналом (t) меняется частота синусоидального несущего сигнала, что иллюстрирует рис.11.

Заметим,что
, а соответственно и частота может меняться не только резко, но и плавно.

Для ЧМ существует два параметра, характеризующие интенсивность воздействия модулирующего сигнала на несущий сигнал.

    Девиация частоты

f = f max – f 0

или f = f 0 - f min

f - отклонение частоты от центрального значения.

    Индекс частотной модуляции .

Это отношение девиации частоты к частоте модулирующего сигнала.

0    несколько десятков или сотен.

Частотный спектр при ЧМ.

Его можно получить на основе ЧС при АМ.

Пусть модулирующий сигнал является последовательностью прямоугольных импульсов, т.е. имеет два уровня.

В модулированном ЧМ – сигнале соответственно будет две частоты
и
- рис.24,б. Его можно представить в виде суммы двух АМ – сигналов рис.24,в,г.

U ЧМ = U АМ1 + U АМ2

Соответственно, спектр этого ЧМ - сигнала S ЧМ можно представить в виде суммы двух спекторов АМ: S ЧМ = S АМ1 + S АМ2

Это показано на рисунке 25.

Рис.25

Спектры двух слагаемых S АМ1 и S АМ2 отличаются разными несущими частотами f 01 и f 02 . Это объяснение приводит к выводам:

    Спектры ЧМ шире, чем спектр АМ - сигнала.

    Спектр получается «горбатый».

    Линии одного спектра S АМ1 могут перекрываться линиями другого спектра S АМ2 .

    Из рисунка получаем, что ширина спектра при ЧМ:

В этом выражении – спектр модулирующего сигнала.

f 02 – f 01 = 2f

- девиация частоты, связанная с f 02 и f 01 .

Если также учесть, что:

, то в результате получаем: F ЧМ = 2 F  (1 + )

Вывод: ширина ЧС при ЧМ больше чем ширина ЧС при АМ в (1 + ) раз.

12. Способы импульсной модуляции (им).

При ИМ переносчиком является последовательность импульсов.

Параметры импульсного сигнала - амплитуда (U m), период или частота (Т или f = 1/T), длительность импульса (t u), фаза импульсов ().

В соответствии с этими параметрами различают способы ИМ:

    Амплитудно – импульсная модуляция (АИМ) – Um.

    Частотно – импульсная мод-ия (ЧИМ)- f.

    Широтно–импульсная мод-ия (ШИМ) - t u .

4. Фазо – импульсная модуляция (ФИМ) - .

При АИМ амплитуда является функцией модулирующего сигнала. При ЧИМ функцией модулирующего сигнала является средняя частота (или период) следования импульсов.

При ШИМ функцией модулирующего сигнала является

длительность импульса. При ФИМ функцией модулирующего сигнала является время паузы между соседними импульсами.

Кодо-Импульсная модуляция (КИМ).

Отличие: какому-то одному значению модулирующего сигнала  соответствует несколько импульсов (последовательный код). Последовательный код – двоичное число:

1 – есть импульс,

0 – нет импульса

КИМ – один из ключевых способов передачи информации, применяется для связи между компьютерами (Интернет, модемы и т.д.)

При КИМ увеличивается время передачи сигнала, но обеспечивается высокая достоверность и высокая помехозащищенность.

Комбинированные способы модуляции (км).

Комбинируют, например, непрерывные способы модуляции с импульсными способами модуляции.

При КМ вначале, например, используется импульсный передатчик, а получаемый модулированный сигнал модулирует непрерывный передатчик (в синусоиду).ШИМ – 1 этап модуляции.

Это пример ШИМ-АМ.

Комбинируя разные способы импульсной и непрерывной модуляции можно получить большое количество комбинированных способов. Например, ФИМ-АМ, ШИМ-ЧМ, ЧИМ-ЧМ, и т.д. Применение КМ связано с тем, что требуется приспособить передаваемый сигнал к характеристикам канала связи.