Схема с общим эмиттером транзистор входные сопротивления. Биполярный транзистор в схеме с общим эмиттером

09.08.2019 Флешки и HDD

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от , а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Чтобы такого не произошло, в эту схему добавляют еще парочку и в результате получается схема с 4-мя резисторами:


Резистор между базой и эмиттером назовем R бэ , а резистор, соединенный с эмиттером, назовем R э . Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»

Начнем, пожалуй, с R э .

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->R к ——> коллектор—> эмиттер—>R э —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как I э = I к + I б ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

R кэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения , где


Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе R э .

А чему равняется падение напряжения на R э ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора R э . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы R б и R бэ ?


Именно эти два резистора представляют из себя опять же простой делитель напряжения . Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к R э.

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе R э .

б) падение напряжения на резисторе R э — это и есть напряжение на эмиттере U э . Следовательно, из-за увеличения силы тока в цепи U э стало чуток больше.

в) на базе у нас фиксированное напряжение U б , образованное делителем из резисторов R б и R бэ

г) напряжение между базой эмиттером высчитывается по формуле U бэ = U б — U э . Следовательно, U бэ станет меньше, так как U э увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз U бэ уменьшилось, значит и сила тока I б , проходящая через базу-эмиттер тоже уменьшилась.

е) Выводим из формулы ниже I к

I к =β х I б

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор R э . Забегая вперед, скажу, что О трицательная О братная С вязь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскада


1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

P рас = 150х0,8=120 милливатт.

2) Определим напряжение на U кэ . Оно должно равняться половине напряжения Uпит.

U кэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

I к = P рас / U кэ = 120×10 -3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере U кэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах R к и R э . То есть получаем:

R к + R э = (Uпит / 2) / I к = 6 / 20х10 -3 = 300 Ом.

R к + R э = 300 , а R к =10R э, так как K U = R к / R э , а мы взяли K U =10 ,

то составляем небольшое уравнение:

10R э + R э = 300

11R э = 300

R э = 300 / 11 = 27 Ом

R к = 27х10=270 Ом

5) Определим ток базы I базы из формулы:

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.


Значит,

I б = I к / β = 20х10 -3 /140 = 0,14 миллиампер

6) Ток делителя напряжения I дел , образованный резисторами R б и R бэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток I б :

I дел = 10I б = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

U э = I к R э = 20х10 -3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

U б = U бэ + U э

Давайте возьмем среднее значение падения напряжения на базе-эмиттер U бэ = 0,66 Вольт . Как вы помните — это падение напряжения на P-N переходе.

Следовательно, U б =0,66 + 0,54 = 1,2 Вольта . Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на R б называется U 1 , а падение напряжения на R бэ будет U 2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

R б = U 1 / I дел = 10,8 / 1,4х10 -3 = 7,7 КилоОм . Берем из ближайшего ряда 8,2 КилоОма

R бэ = U 2 / I дел = 1,2 / 1,4х10 -3 = 860 Ом . Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:


Проверка работы схемы в железе

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:


Итак, беру свой и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты :


Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:


Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала


Заключение

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых , эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI .

Во-вторых , ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратно й связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно 😉 А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо) Поэтому необходимо создать смещение . Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу 😉 Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы)

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами 😉 Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя , но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Усилители содержат транзисторы, а также такие элементы, как резисторы, конденсаторы и катушки индуктивности. Пара­метры используемых элементов (их номиналы и напряжения) зависят от требований, предъявляемых к усилителю, а также от типа применяемых транзисторов. С появлением транзисторов различных типов стали возможны новые конфигурации схем усилителей. В биополярном р - n - р- или n - р - n -транзисторе создаются чередующиеся в определенном порядке области с различным видом проводимости, образующие базу, эмиттер и коллектор. Транзистор называется биполярным, поскольку пе­ренос зарядов в нем осуществляется как электронами, так и дырками. В полевых же (униполярных) транзисторах заряды переносятся носителями одного вида: либо электронами, либо дырками. Полевые транзисторы (ПТ) имеют три области, на­зываемые затвором, истоком и стоком, В зависимости от вида используемых носителей различают два типа полевых транзи­сторов: р- и я-канальные. Разным типам транзисторов соответ­ствуют различные характеристики, описываемые более подроб­но в этом разделе.

Наиболее распространенная схема построения усилителя на биполярном транзисторе - схема с общим (заземленным) эмит­тером (ОЭ); варианты таких схем показаны на рис. 11.1. Термин «общий эмиттер» указывает на то, что в соответствующей схе­ме сопротивление между выводом эмиттера и землей для сиг­нала мало, но из этого не следует, что оно во всех случаях ма­ло и для постоянного тока. Так, например, в схемах показан­ных на рис. 1.1, а и б, эмиттеры непосредственно заземлены, а в схеме на рис. 1.1, в между эмиттером и землей включено сопро­тивление, зашунтированное конденсатором. Поэтому, если ре­активное сопротивление этого конденсатора для сигнала мало, можно считать, что для сигнала эмиттер практически заземлен.

Для работы в классе А (разд. 1.4) напряжение смещения между базой и эмиттером должно быть прямым (отпирающим), а между коллектором и эмиттером - обратным (запирающим). Для получения такого смещения полярности источников пита­ния выбирают в зависимости от типа используемого транзисто­ра. Для транзистора р - n - р-типа (рис. 11 Л, а) плюс источника смещения должен быть подключен к эмиттеру р-типа, а ми­нус - к базе я-типа. Таким образом, прямое смещение получа­ется при отрицательном потенциале базы относительно эмитте­ра. Для обратного смещения коллектора р-типа его потенциал должен быть отрицательным. Для этого источник питания под­ключается положительным полюсом к эмиттеру, а отрицатель­ным к коллектору.

Входной сигнал создает на резисторе R 1 падение напряже­ния, которое алгебраически складывается с постоянным смещающим напряжением. В результате этого суммарный потенци­ал базы изменяется в соответствии с сигналом. С изменением потенциала базы меняется ток коллектора, а следовательно, и напряжение на резисторе R 2. При положительной полуволне входного напряжения прямое смещение уменьшается и ток че­рез R 2 соответственно уменьшается. Падение напряжения на R 2 также уменьшается, в результате чего между входным и вы­ходным сигналами образуется сдвиг фаз в 180°.

Если используется транзистор n - р - n-типа (рис. 1.1,6), то полярность обоих источников питания меняется на обратную. При этом базовый переход также оказывается смещенным в прямом направлении, а коллекторный - в обратном. Как и в предыдущем случае, между входным и выходным сигналами образуется сдвиг фаз в 180°.

На рис. 1.1,а и б изображены основные элементы усилителя, а схема усилителя, применяемая на практике, приведена на рис. 1.1,6. Здесь конденсатор С 1 не пропускает постоянной со­ставляющей входного сигнала, но имеет малое реактивное со­противление для его переменной составляющей, которая таким образом поступает на резистор R 2 . (Это так называемая RC -связь; более подробно она описана в разд. 1.5). Напряжение прямого смещения базы поступает с делителя напряжения Ri - R2, который подключен к источнику питания. Нужная вели­чина прямого смещения базы транзистора получается при над­лежащем выборе отношения величин сопротивлений R 1 и R 2 . При этом в транзисторе n - р - n-типа потенциал базы устанав­ливают более положительным, чем эмиттер. Коллекторный ре­зистор, на котором образуется выходной сигнал, обычно назы­вают резистором нагрузки и обозначают R н. Через разделитель­ный конденсатор С 3 сигнал поступает на следующий каскад. Входные и выходные цепи должны иметь общую заземленную точку (рис. 1.1, а).

Коэффициент усиления тока базы для схемы с ОЭ задается следующим соотношением:

где р - коэффициент усиления тока базы;

ДI б - приращение тока базы; ДI к - соответствующее приращение тока коллектора при-

Рис. 1.1. Схемы с общим эмиттером.

Таким образом, р равно отношению приращения коллектор­ного тока к соответствующему приращению базового тока прк постоянном коллекторном напряжении. Коэффициент усиление сигнального тока также называют коэффициентом прямой пере­дачи тока [ При достаточно большой величине сопротивления R 2 переменная состав­ляющая сигнального тока практически равна переменной составляющей тока базы. - Прим. ред. ]

Резистор R 3 (рис. 1.1,5) оказывает стабилизирующее дейст­вие на ток транзистора при изменении температуры. Падение напряжения на R 3 создает обратное (запирающее) смещение эмиттерного перехода транзистора, так как оно повышает по­тенциал эмиттера. Следовательно, оно уменьшает положитель­ное прямое смещение базы на величину этого падения напря­жения. Присутствие переменной составляющей напряжения на Rз вызвало бы уменьшение выходного сигнала и, следователь­но, коэффициента усиления усилителя (см. разд. 1.8). Для устранения этого эффекта резистор Rз шунтируют конденсато­ром С 2 .

При нагреве транзистора постоянная составляющая тока коллектора возрастает. Соответственно возрастает и падение напряжения на R z , что приводит к уменьшению прямого смеще­ния базы, а также тока коллектора. В результате осуществля­ется частичная компенсация температурного дрейфа тока.

Рис. 1.2. Схемы с общим истоком

На рис. 1.2 показана схема усилителя на полевом транзи­сторе, эквивалентная схеме с ОЭ, которая называется схемой с общим истоком. В этой схеме затвор соответствует базе би­полярного транзистора, исток - эмиттеру, а сток - коллектору. На схеме 1.2, а показан ПТ с каналом n-типа. Для транзистора с каналом р-типа стрелка на затворе будет направлена в про­тивоположную сторону. На рис. 1.2, б также показан транзи­стор с каналом д-типа, а на рис. 1.2, в - с каналом р-типа.

Цепи смещения ПТ отличаются от цепей смещения бипо­лярных транзисторов вследствие существенного различия ха­рактеристик этих приборов. Биполярные транзисторы являются усилителями сигнального тока и воспроизводят на выходе уси­ленный входной сигнальный ток, в то время как в полевых транзисторах выходным сигнальным током управляет приложен­ное ко входу напряжение сигнала.

Существуют два типа ПТ: с управляющим р - n-переходом и металл - окисел - полупроводник (МОП). (МОП-транзи­сторы называют также полевыми транзисторами с изолирован­ным затвором.) Полевые транзисторы обоих типов изготовляют с nи р-каналами.

В схеме на рис. 1.2, а используется ПТ с управляющим р - я-переходом, а в схеме на рис. 1.2, б - МОП-транзистор, ра­ботающий в режиме обогащения. На рис. 1.2, в изображен МОП-транзистор, работающий в режиме обеднения. У МОП-транзисторов затвор изображается как бы в виде обкладки конденсатора, что символизирует емкость, возникающую в ре­зультате формирования очень тонкого слоя окисла, изолирую­щего металлический контакт вывода затвора от канала. (От этого способа производства и произошел термин «МОП-тран­зистор».)

Поскольку ПТ управляются напряжением входного сигнала, а не током, как биполярные транзисторы, параметр «коэффи­циент усиления» сигнального тока заменяется передаточной проводимостью g m . Передаточная проводимость является мерой качества полевого транзистора и характеризует способность на­пряжения затвора управлять током стока. Выражение для пе­редаточной проводимости выглядит следующим образом:

Единица измерения g m , называемая сименсом, есть величина, обратная единице измерения сопротивления (1 См=1/Ом). Как следует из выражения (1.2), параметр g m для ПТ есть отноше­ние приращения тока стока к приращению напряжения затвора при постоянной величине напряжения между истоком и стоком.

В полевом транзисторе с управляющим р - n-переходом и ка­налом n-типа (рис. 1.2,а) при поступлении отрицательного на­пряжения на затвор происходит обеднение канала носителями зарядов и проводимость канала уменьшается. (Для ПТ с кана­лом р-типа проводимость уменьшается при действии положи­тельного напряжения на затвор.) Поскольку однопереходный по­левой транзистор имеет только две зоны с разными типами прово­димости (выводы истока и стока подключены к одной зоне, а вы­вод затвора - к другой), проводимость между истоком и стоком того же типа, что и проводимость канала. Следовательно, в отли­чие от биполярного транзистора, у которого при U Q 3 = 0 ток кол­лектора равен 0, ток канала может протекать даже при нулевом напряжении затвор - исток. Поскольку ток канала это функция напряжения U зи, канал полевого транзистора с управляющим р - n-переходом может проводить ток в обоих направлениях: от истока к стоку и в обратном направлении (у биполярного транзистора ток коллектора в рабочем режиме имеет всегда одно направление). При этом рабочая точка (например, для схем класса А) для таких транзисторов устанавливается путем подачи напряжения обратного смещения затвора в отличие от прямого смещения базового перехода в биполярных транзи­сторах [В транзисторе с управляющим р - n-переходом обычно подается запи­рающее напряжение U 8и на переход (отрицательное для n-канала) и макси­мальный ток в канале получается при U 3 и = 0. Направление тока в канале за­висит от полярности источника питания, подключенного к каналу; при изме­нении полярности источника питания вывод, бывший стоком, становится исто­ком и наоборот. - Прим. ред. ].

Как было отмечено выше, затвор в МОП-транзисторах изо­лирован от канала диэлектриком, например двуокисью крем­ния (SiO 2). При этом затвор имеет очень высокое входное со­противление и на него может подаваться как прямое смещение для обогащения канала носителями (что будет увеличивать про­ходящий ток), так и обратное смещение для обеднения канала носителями (что уменьшает ток канал а). Поэтому возможно из­готовление двух различных типов МОП-транзисторов: для ра­боты в обогащенном и обедненном режимах (здесь имеются в виду МОП-транзисторы с встроенным каналом).

В МОП-транзисторе обедненного типа имеется ток стока при нулевом смещении на входе. Напряжением обратного сме­щения ток стока уменьшают до некоторой величины, зависящей от требуемого динамического диапазона входного сигнала. Как показано на рис. 1.2,6, у транзисторов обедненного типа линия, изображающая канал, непрерывная, что означает наличие замк­нутой цепи и протекание тока в канале (тока стока) при нуле­вом смещении затвора.

В МОП-транзисторах обогащенного типа ток стока при ну­левом смещении мал. Напряжением смещения ток стока увели­чивают до некоторой величины, зависящей от динамического диапазона входного сигнала. У МОП-транзисторов обогащен­ного типа линия, изображающая канал, прерывистая, что сим­волизирует как бы разрыв цепи при нулевом смещении. Для того чтобы увеличить ток до величины, необходимой для нор­мальной работы такой схемы, как усилитель, нужно использо­вать соответствующее смещение.

Рабочие характеристики схем, изображенных на рис. 1.Д аналогичны характеристикам схем, представленных на рис. 1.11. Схема на рис. 1.2, в наиболее пригодна для практического ис­пользования. Как и в ранее рассмотренном случае, имеет место инверсия фазы между входным и выходным сигналами. Напря­жение источника питания обычно обозначают Е с. Для того что­бы уменьшить падение напряжения сигнала на внутреннем со­противлении источников питания и смещения, их шунтируют емкостями соответствующей величины (рис. 11.2, а). Через эти емкости замыкаются токи сигнала цепей затвора и стока.

Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока). У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя. В зависимости от того, какой вывод транзистора является общим как для входа, так и для выхода усилителя, схемы включения транзистора называются:

  • Схема с общим эмиттером
  • Схема с общей базой
  • Схема с общим коллектором

Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.

Схема с общим эмиттером

Наиболее распространенной схемой включения транзистора является (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.


Рисунок 1. Функциональная схема включения транзистора с общим эмиттером

На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.

Схема с общей базой

Схема с общим коллектором

Обычно применяется для получения высокого входного сопротивления. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой. Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.


Рисунок 3. Функциональная схема включения транзистора с общим коллектором

На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.

Литература:

Вместе со статьей "Схемы включения транзистора" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.

Существуют три схемы включения биполярного транзистора:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой;
Начнём со схемы, с общим эмиттером. Схема с общим эмиттером обладает следующими свойствами:
  • большим коэффициентом усиления по току;




Во всех осциллограммах в статье первый канал - входной сигнал, второй канал - выходной сигнал. Входной сигнал берется после разделительного конденсатора, иначе конденсатор вносит сдвиг фазы.
На осциллограмме видно, что амплитуда выходного сигнала в несколько раз превышает амплитуду входного, при этом сигнал на выходе инвертирован относительно входного сигнала, это значит, что когда сигнал входе возрастает на выходе он убывает и наоборот. На схеме пунктирной линией изображен конденсатор, его можно подключить если надо увеличить коэффициент усиления. Давайте подключим его.


Видим, что выходной сигнал увеличился примерно на порядок, то есть в 10 раз. Такая схема включения транзистора применяется, в усилителях мощности.
При включении конденсатора входное сопротивление схемы уменьшилось, что привело к искажениям сигнала генератора, а следовательно и выходного сигнала.

Схема с общим коллектором.

  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с эмиттера;
Схема с общим коллектором обладает следующими свойствами:
  • большим коэффициент усиления по току;
  • напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуды сигналов равны потому, что осциллограф отображает только переменную составляющую, если включить осциллограф на отображение постоянной составляющей, то разница между сигналом на входе и выходе составит 0,6 V. Схема сигнал не инвертирует и применяется в качестве буфера или для согласования каскадов.
Под буфером в электронике понимается схема, которая увеличивает нагрузочную способность сигнала, то есть сигнал остается такой же формы, но способен выдать больший ток.

Схема с общей базой.

  • входной сигнал подаётся на эмиттер;
  • выходной сигнал снимается с коллектора;
Схема с общей базой обладает следующими свойствами:
  • большим коэффициентом усиления по напряжению;
  • близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуда выходного сигнала примерно в десять раз превышает амплитуду входного сигнала, также сигнал на выходе не инвертирован относительно входного сигнала. Применяется такая схема включения транзистора в радиочастотных усилителях. Каскад с общей базой обладает низким входным сопротивлением, поэтому сигнал генератора искажается, следовательно и выходной сигнал тоже.
Возникает вопрос, почему не использовать для усиления радиочастот схему с общим эмиттером ведь она увеличивает амплитуду сигнала? Все дело в ёмкости перехода база-коллектор, её ещё называют ёмкостью Миллера. Для радиочастот эта ёмкость обладает малым сопротивлением, таким образом, сигнал вместо того, чтобы течь через переход база-эмиттер проходит через эту ёмкость и через открытый транзистор стекает на землю. Как это происходит показано на рисунке ниже.


Пожалуй, это всё, что хотелось рассказать про схемы включения транзистора.