Первые электромеханические цифровые компьютеры. Первые компьютеры

03.05.2019 Мобильный интернет

Пока мировые информационные агентства обсуждают создание Китаем самого мощного компьютера в мире, который обещают представить в 2017 году, Предлагаем вам вспомнить, каким был самый первый компьютер.

ЭНИАК ENIAC (Electronic Numerical Integrator and Computer) – первый электронный вычислитель, который можно было перепрограммировать для выполнения различных задач широкого спектра.

Машину начали разрабатывать в 1943 году силами ученых из Пенсильванского университета по заказу армии США.

Примечательно, что в качестве одной из первых тестовых задач компьютера было математическое моделирование термоядерного взрыва супербомбы. В 1950 году на машине был произведен первый успешный цифровой прогноз погоды. ЭНИАК имел «внушительные» характеристики: вес - 27 тонн, потребляемая мощность - 174 кВт, вычислительная мощность - 357 операций умножения в секунду.

/Я добавлю к выше приведенному перепосту, ряд исторических сведений о развитии компьютерной техники, пользуясь хронологией из книги В. П. Леонтьева: «Новейшая энциклопедия Компьютер и Интернет 2012»

Хронология начинается с примерной датировкой 1500 года, сообщением: «Леонардо да Винчи разрабатывает эскиз тринадцатиразрядного вычислительного устройства». Выбранные мной сведения:

1623 год. Первая «считающая машина» созданная Уильямом Шиккардом, могла применять простые арифметические действия (сложение, вычитание) с 6-значными числами.

1654 год. Классическая логарифмическая линейка создана Робертом Биссакаром.

1658 год. В русских исторических документах впервые упоминается слово «счеты».

1770 год. Счетная машина Евно Якобсона оперирующая 9-разрядными числами (Россия)

1774 год. Первая массовая «счетная машина» - механический калькулятор, созданный и продававшийся Филиппом –Малтусом Ханом. 2-разрядный, 4-разрядный, 11-разрядный, а затем и 14 разрядный арифмометр Хана снискали большую популярность.

1820 год. Первый калькулятор – «арифмометр» Томаса де Кольмара. Первое механическое считающее устройство, поступившее в широкую продажу и продержавшееся (с небольшими усовершенствованиями) целых 90 лет. Первый «серийный» арифмометр.

1833 год. Чальз Баббидж предложил проект цифровой вычислительной машины с программным управлением, так называемой аналитической машины…
1842 год. Россия. З.Я. Слонимский изобретает множительное устройство, основанное на теории чисел, а не на хитроумных механизмах. …

1846 год. … Россия. Куммер изобретает устройство («счислитель Куммера»), которое с различными модификациями выпускалось вплоть до 70-х годов ХХ века. Основано на устройстве Слонимского, но компактнее.

1848 год. Английский математик Джордж Буль создает принцип «Двоичной системы».

1876 год. Между Америкой и Европой проложен первый трансатлантический кабель. (Вообще то попытки проложить телеграфный кабель предпринимались с 1856 года, но не всегда приводили к успеху. Первый оптоволоконный кабель через Атлантику был проложен в 1988 году.)
Пафнутий Чебышев построил 10-разрядную суммирующую машину с непрерывной передачей десятков за счет планетарной передачи. Александр Белл создает телефон.

1886 год. Фриц Азбергер и Макс Майер запатентовали клавишные суммирующие машины.

1927 год. В Массачусетском технологическом институте создан первый механический компьютер под названием «механический разум» (MechanicalMind)/

1930 год «Дифференцирующее устройство» - первый аналоговый компьютер, разработанный в США Ванневаром Бушем.

1935 год Корпорация InternationalBusinessMachines (IBM) начала выпуск массовых вычислителей IBM-601.

1938 год. Конрад Цузе, друг и коллега знаменитого Вернера фон Брауна, создал один из первых компьютеров – Z1, первую «двоичную» машин, понимавшую программы, введенные с перфорированной киноленты.

1939 год. Джордж Стибиц создает в лабораториях компании Bell первую вычислительную машину Bell I , способную выполнять сложение, вычитание, умножение и деление сложных чисел.
Американцы Риш, Дадли и Уоткинс демонстрируют на выставке в Нью-Йорке электрическую говорящую машину – «Синтезатор речи –Вокодер».

1943 год. Первый электронный компьютер Colossus (Великобритания), предназначенный для расшифровки немецкой шифровальной машины «Энигма». «Колосс», созданный М. А. Ньюменом и Т. Х. Флоуерсом, содержал более 1500 электронных ламп.
Представленную выборку из указанной выше хронологии я привел, чтобы показать, что креативная часть человечества более пятисот лет трудилось над созданием вычислительных машин, в дальнейшем развитии превратившихся в электронные вычислительные машины (ЭВМ), то есть предшественники современных вычислительных, коммуникационных и управляющих устройств./

ЭНИАК - ENIAC , сокр. от

Скачать:


Предварительный просмотр:

ЭНИАК (англ. ENIAC , сокр. от Electronic Numerical Integrator and Computer - Электронный числовой интегратор и вычислитель) - первый электронный цифровой компьютер общего назначения, который можно было перепрограммировать для решения широкого спектра задач.

История создания

Архитектуру компьютера начали разрабатывать в 1943 году Джон Преспер Экерт (англ. ) и Джон Уильям Мокли , учёные из Пенсильванского университета (Электротехническая школа Мура ) по заказу Лаборатории баллистических исследований (англ. ) Армии США для расчётов таблиц стрельбы . В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса , использовавшего механические реле , в ЭНИАКе в качестве основы элементной базы применялись вакуумные лампы .

Расчёты таблиц стрельбы в то время проводились вручную на настольных арифмометрах . Эту работу в Лаборатории выполняли особые клерки - « компьютеры » - в основном женщины. Таблицы стрельбы рассчитывались для каждого отдельного типа снаряда и орудия перед отправкой на фронт, и при различных комбинациях множества параметров (температура воздуха, скорость ветра, плотность почвы под орудием, возвышение ствола, скорость снаряда, температура ствола орудия) требовался кропотливый расчёт около 3000 траекторий полёта снаряда. Расчёт каждой траектории требовал примерно 1000 операций. Один вычислитель был способен выполнить этот расчет за 16 дней, а на вычисление всей таблицы потребовалось бы 4 года. Без этих таблиц артиллеристам просто невозможно было точно попасть в цель. В условиях Второй Мировой войны на фронт в Европу отправлялось всё больше и больше орудий и снарядов к ним, в 1943 году союзные войска высадились в Африке, где условия стрельбы были совершенно новыми и требовали новых таблиц, а Лаборатория не справлялась со своевременным их расчётом.

В Институте Мура имелся один из немногих « дифференциальных анализаторов » - механический вычислитель, к помощи которого прибегала Лаборатория для выполнения хотя бы части расчётов. В этом институте Мокли работал преподавателем, а Экерт - был простым студентом с незаурядными способностями инженера. В августе 1942 года Мокли написал 7-страничный документ «The Use of High-Speed Vacuum Tube Devices for Calculation», в котором предлагал Институту построить электронную вычислительную машину основанную на вакуумных лампах. Руководство Института работу не оценило и сдало документ в архив, где он вообще был утерян.

Сотрудничество Института Мура с Баллистической Лабораторией по вычислению таблиц стрельбы осуществлялось через капитана Германа Голдстайна , который до поступления на службу в армию работал профессором математики в Университете штата Мичиган. Лишь в начале 1943 года один из работников Института в случайной беседе сообщил Голдстайну об идее электронного вычислителя, с которой носился Мокли. Использование электронной вычислительной машины позволило бы Лаборатории сократить время расчёта с нескольких месяцев до нескольких часов. Голдстайн встретился с Мокли и предложил ему обратиться с заявкой в Лабораторию на выделение средств для постройки задуманной машины. Мокли по памяти восстановил утерянный 7-страничный документ с описанием проекта.

9 апреля 1943 года проект был представлен Баллистической Лаборатории на заседании Комиссии по науке. В проекте машина называлась «электронный дифф. анализатор» (electronic diff. analyzer). Это была уловка, чтобы новизна проекта не вызвала отторжение у военных. Все они были уже знакомы с дифференциальным анализатором, и проект в их представлении просто предлагал сделать его не механическим, а электрическим. Проект обещал, что построенный компьютер будет вычислять одну траекторию за 5 минут.

После короткой презентации научный консультант комиссии Освальд Веблен одобрил идею, и деньги (61.700 долларов США на первые 6 месяцев исследовательских работ) были выделены. В контракте под номером W-670-ORD-4926, заключенном 5 июня 1943 года, машина называлась «Electronic Numerical Integrator» («Электронный числовой интегратор»), позднее к названию было добавлено «and Computer» («и вычислитель»), в результате чего получилась знаменитая аббревиатура ENIAC. Куратором проекта «Project PX» со стороны Армии США выступил опять-таки Герман Голдстайн .

К февралю 1944 года были готовы все схемы и чертежи будущего компьютера, и группа инженеров под руководством Экерта и Мокли приступила к воплощению замысла в «железо». В группу вошли также:

  • Роберт Шоу (Robert F. Shaw) (функциональные таблицы)
  • Джеффри Чуан Чу (Jeffrey Chuan Chu) (модуль деления/извлечения квадратного корня)
  • Томас Кайт Шарплес (Thomas Kite Sharpless) (главный программист)
  • Артур Бёркс (Arthur Burks ) (модуль умножения)
  • Гарри Хаски (Harry Huskey ) (модуль чтения вывод данных)
  • Джек Дэви (Jack Davis) (аккумуляторы)
  • Джон фон Нейман - присоединился к проекту в сентябре 1944 года в качестве научного консультанта. На основе анализа недостатков ЭНИАКа внёс существенные предложения по созданию новой более совершенной машины - EDVAC

В середине июля 1944 года Мокли и Эккерт собрали два первых «аккумулятора» - модули, которые использовались для сложения чисел. Соединив их вместе, они перемножили два числа 5 и 1000 и получили верный результат. Этот результат был продемонстрирован руководству Института и Баллистической Лаборатории и доказал всем скептикам, что электронный компьютер действительно может быть построен.

Компьютер был полностью готов лишь осенью 1945 года. Так как война к тому времени уже была закончена, и острой необходимости в быстром расчёте таблиц стрельбы уже не было, военное ведомство США решило использовать ENIAC в расчётах по разработке термоядерного оружия.

Будучи сверхсекретным проектом Армии США, компьютер был представлен публике и прессе лишь много месяцев спустя после окончания войны - 14 февраля 1946 года. Через несколько месяцев - 9 ноября 1946 года - ENIAC был разобран и перевезён из Университета Пенсильвании в г. Абердин в Лабораторию баллистических исследований Армии США, где с 29 июля 1947 года он успешно проработал ещё много лет и был окончательно выключен 2 октября 1955 года в 23:45 .

В Баллистической Лаборатории на ENIAC выполнялись расчеты по проблеме термоядерного оружия, прогнозам погоды в СССР для предсказания направления выпадения ядерных осадков на случай ядерной войны, инженерные расчёты, и конечно же таблиц стрельбы , включая таблицы стрельбы ядерными боеприпасами.

Использование

В качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера . Фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчётов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении Лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ. ) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом , познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».

Производительность ЭНИАКа была слишком мала для полноценного моделирования, поэтому Метрополис и Френкель сильно упростили уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном пространстве. Детали и результаты выполненных в ноябре - декабре 1945 года расчётов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946 года группа Теллера обсудила результаты расчётов и сделала вывод, что они достаточно обнадёживающе (хотя и очень приблизительно) доказывают возможность создания водородной бомбы.

На обсуждении результатов расчёта присутствовал Станислав Улам . Поражённый скоростью работы ЭНИАКа, он предложил сделать расчёты по термоядерному взрыву методом Монте-Карло . В 1947 году на ЭНИАКе было выполнено 9 расчётов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.

Британский физик Дуглас Хартри в апреле и июле 1946 года решал на ЭНИАКе проблему обтекания воздухом крыла самолета, движущегося быстрее скорости звука. ЭНИАК выдал ему результаты расчётов с точностью до седьмого знака. Об этом опыте работы Хартри написал в статье в сентябрьском выпуске журнала Nature за 1946 год .

В 1949 году фон Нейман использовал ЭНИАК для расчёта числа и с точностью до 2000 знаков после запятой. Фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит - компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа e были выполнены в июле 1949 года, а для числа π - за один день в начале сентября. Результаты показали, что «цифры в числе π идут в случайном порядке, а вот с числом e всё обстояло значительно хуже» .

На ЭНИАКе весной 1950 года был произведён первый успешный численный прогноз погоды командой американских метеорологов Жюлем Чарни (англ. ), Филипом Томсоном, Ларри Гейтсом, норвежцем Рагнаром Фьюртофтом (англ. ) и математиком Джоном фон Нейманом . Они использовали упрощённые модели атмосферных потоков на основе баротропного уравнения вихря скорости. Это упрощение понизило вычислительную сложность задачи и позволило произвести расчёты с использованием доступных в то время вычислительных мощностей . Расчёты велись начиная с 5 марта 1950 года в течение 5 недель, пять дней в неделю в три 8-часовые смены. Ещё несколько месяцев ушло на анализ и оценку результатов. Описание расчётов и анализ результатов были представлены в работе «Numerical Integration of Barotropic Vorticity Equation» , опубликованной 1 ноября 1950 года в журнале Tellus. В статье упоминается, что прогноз погоды на следующие 24 часа на ЭНИАКе был выполнен за 24 часа, то есть прогноз едва успевал за реальностью. Большая часть времени уходила на распечатку перфокарт и их сортировку. Во время расчётов приходилось на ходу вносить изменения в программу и ждать замены перегоревших ламп. При должной оптимизации работы ЭНИАКа, говорилось в работе, расчёт можно было бы выполнить за 12 часов, а при использовании более совершенных машин - за 30 минут. Для прогноза использовались карты погоды над территорией США и Канады за 5, 30, 31 января и 13 февраля 1949 года. После расчётов прогнозные карты сравнивались с реальными для оценки качества прогноза .

Характеристики, архитектура и программирование

На создание ENIAC ушло 200 000 человеко-часов и 486 804,22 доллара США. Всего комплекс включал в себя 17 468 ламп 16 различных типов, 7200 кремниевых диодов , 1500 реле, 70 000 резисторов и 10 000 конденсаторов .

  • Вес - 27 тонн.
  • Объём памяти - 20 число-слов.
  • Потребляемая мощность - 174 кВт .
  • Вычислительная мощность - 357 операций умножения или 5000 операций сложения в секунду .
  • Тактовая частота - 100 кГц , то есть один импульс каждые 10 микросекунд. Основной вычислительный такт состоял из 20 импульсов и занимал 200 микросекунд. Сложение выполнялось за 1 такт, умножение - за 14 тактов. Умножение заменялось многократным сложением, так что 1 умножение равнялось 14 операциям сложения и выполнялось, соответственно, за 2800 микросекунд.
  • Устройство ввода-вывода данных - табулятор перфокарт компании IBM: 125 карт/минуту на ввод, 100 карт/минуту на вывод .

Вычисления производились в десятичной системе , после тщательного анализа ей было отдано предпочтение перед двоичной системой . Компьютер оперировал числами максимальной длиной в 20 разрядов .

Многие специалисты Института скептически предсказывали, что при таком количестве ламп в системе компьютер просто не сможет работать сколь-нибудь продолжительное время, чтобы выдать стоящий результат - слишком много точек отказа. Выход из строя одной лампы, одного конденсатора или резистора означал остановку работы всей машины, всего существовало 1,8 миллиарда различных вариантов отказа в каждую секунду . До этого человечество не создавало ни один прибор такой сложности и с таким требованием к надёжности. Для того, чтобы вакуумные лампы реже перегорали, Экерт придумал подавать на них минимальное напряжение - 5.7 вольт вместо номинальных 6.3 вольта , а после произведения вычислений ЭНИАК продолжал работать, поддерживая лампы в «тёплом» состоянии, чтобы перепад температуры при охлаждении и накаливании не приводил к их перегоранию. За неделю сгорало примерно 2-3 лампы , а среднее время работы лампы составляло 2500 часов . Особо высокие требования предъявлялись к отбору радиодеталей и качеству монтажа и пайки. Так инженеры добились того, чтобы ЭНИАК работал минимум 20 часов между поломками - не так много по нынешним меркам, но за каждые 20 часов работы ЭНИАК выполнял месячный объём работы механических вычислителей.

До 1948 года для перепрограммирования ENIAC нужно было перекоммутировать его заново, в то время как умел считывать программы с перфорированной ленты . Программирование задачи на ЭНИАКе могло занимать до двух дней, а её решение - несколько минут. При перекоммутировании ЭНИАК превращался как бы в новый специализированный компьютер для решения специфической задачи. Ещё на этапе конструирования ЭНИАКа Экерт и Мокли понимали недостатки своего детища, но на этапе проектирования они не считались критическими, поскольку компьютер изначально предназначался для выполнения однотипных баллистических расчётов .

В январе 1944 года Экерт сделал первый набросок второго компьютера с более совершенным дизайном, в котором программа хранилась в памяти компьютера, а не формировалась с помощью коммутаторов и перестановки блоков, как в ЭНИАКе. Летом 1944 года военный куратор проекта Герман Голдстайн случайно познакомился со знаменитым математиком фон Нейманом и привлёк его к работе над машиной. Фон Нейман внёс свой вклад в проект с точки зрения строгой теории. Так был создан теоретический и инженерный фундамент для следующей модели компьютера под названием EDVAC с хранимой в памяти программой. Контракт с Армией США на создание этой машины был подписан в апреле 1946 года.

Научная работа фон Неймана «

С 16 сентября 1948 года ENIAC превратился в компьютер с хранимой программой (весьма примитивный). По предложению фон Неймана высказанному в июне 1947 года две функциональные таблицы были использованы для хранения всех команд ENIAСа, чтобы команды вызывались как подпрограммы во время исполнения кода. Компьютер стал работать несколько медленнее, но его программирование сильно упростилось. Старый метод перекоммутирования с тех пор больше не использовался .

В июле 1953 года к ЭНИАКу был подключен двоично-десятичный модуль памяти на магнитных сердечниках, увеличивший объём оперативной памяти компьютера с 20 до 120 число-слов.

Влияние

ЭНИАК нельзя было назвать совершенным компьютером. Машина создавалась в военное время в большой спешке с нуля при отсутствии какого-либо предыдущего опыта создания подобных устройств. ЭНИАК был построен в единственном экземпляре, и инженерные решения, реализованные в ЭНИАКЕ, не использовались в последующих конструкциях компьютеров. ЭНИАК скорей компьютер не первого, а «нулевого» поколения. Значение ЭНИАКа заключается просто в его существовании, которое доказало возможность построения полностью электронного компьютера, способного работать достаточно продолжительное время, чтобы оправдать затраты на его постройку и принести ощутимые результаты.

В марте 1946 года Экерт и Мокли из-за споров с Пенсильванским университетом о патентах на ЭНИАК и на EDVAC , над которым они в то время работали, решили покинуть институт Мура и начать частный бизнес в области построения компьютеров, создав компанию Electronic Control Company, которая позднее была переименована в Eckert–Mauchly Computer Corporation . В качестве «прощального подарка» и по просьбе Армии США они прочитали в институте серию лекций о конструировании компьютеров под общим названием «Теория и методы разработки электронных цифровых компьютеров», опираясь на свой опыт построения ENIAC и проектирования EDVAC. Эти лекции вошли в историю как « Лекции школы Мура ». Лекции - по сути первые в истории человечества компьютерные курсы - читались летом 1946 года с 8 июля по 31 августа только для узкого круга специалистов США и Великобритании, работавших над той же проблемой в разных правительственных ведомствах и научных институтах, всего 28 человек. Лекции послужили отправной точкой к созданию в 40-х и 50-х годах успешных вычислительных систем англ.


)) по заказу Лаборатории баллистических исследований (англ. ) Армии США для расчётов таблиц стрельбы . В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса , использовавшего механические реле , в ЭНИАКе в качестве основы компонентной базы применялись вакуумные лампы .

К февралю 1944 года были готовы все диаграммы и чертежи будущего компьютера, и группа инженеров под руководством Экерта и Мокли приступила к воплощению замысла в «железо». В группу вошли также:

  • Роберт Шоу (Robert F. Shaw} (функциональные таблицы)
  • Джеффри Чуан Чу (Jeffrey Chuan Chu) (модуль деления/извлечения квадратного корня)
  • Томас Кайт Шарплес (Thomas Kite Sharpless) (главный программист)
  • Артур Бёркс (Arthur Burks) (модуль умножения)
  • Гарри Хаски (Harry Huskey) (модуль чтения вывод данных)
  • Джек Дэви (Jack Davis) (аккумуляторы)

В середине июля 1944 года Мокли и Эккерт собрали два первых «аккумулятора» - модули, которые использовались для сложения чисел. Соединив их вместе, они перемножили два числа 5 и 1000 и получили верный результат. Этот результат был продемонстрирован руководству Института и Баллистической Лаборатории и доказал всем скептикам, что электронный компьютер действительно может быть построен.

Компьютер был полностью готов лишь осенью 1945 года. Так как война к тому времени уже была закончена, и острой необходимости в быстром расчете таблиц стрельбы уже не было, военное ведомство США решило использовать ENIAC в расчетах по разработке термоядерного оружия.

Будучи сверхсекретным проектом Армии США, компьютер был представлен публике и прессе лишь много месяцев спустя после окончания войны - 14 февраля 1946 года. Через несколько месяцев - в ноябре 1946 года - ENIAC был разобран и перевезен из Университета Пенсильвании в г. Абердин в Лабораторию баллистических исследований Армии США, где с августа 1947 года он успешно проработал ещё много лет и был окончательно выключен 2 октября 1955 года.

В Баллистической Лаборатории на ENIAC выполнялись расчеты по проблеме термоядерного оружия, прогнозам погоды в СССР для предсказания направления выпадения ядерных осадков на случай ядерной войны, инженерные расчеты, и конечно же таблиц стрельбы , включая таблицы стрельбы ядерными боеприпасами.

Использование

В качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера. фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчетов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении Лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ. ) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом , познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».

Производительность ЭНИАКа был слишком мала для полноценной симуляции, поэтому Метрополис и Френкель сильно упростили уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном пространстве. Детали и результаты выполненных в ноябре-декабре 1945 года расчетов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946 года группа Теллера обсудила результаты и расчетов и сделала вывод, что они достаточно обнадеживающе хотя и очень приблизительно доказывают возможность создания водородной бомбы.

На обсуждении результатов расчета присутствовал Станислав Улам . Пораженный скоростью работы ЭНИАКа он предложил сделать расчеты по термоядерному взрыву методом Монте-Карло . В 1947 году на ЭНИАКе было выполнено 9 расчетов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.

В 1949 году фон Нейман использовал ЭНИАК для расчета числа пи и с точностью до 2000 знаков после запятой. фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа были выполнены в июле 1949 года, а для числа пи - за один день в начале сентября. Результаты показали, что «цифры в числе пи идут в случайном порядке, а вот с числом все обстояло значительно хуже» .

Вычисления производились в десятичной системе , после тщательного анализа ей было отдано предпочтение перед двоичной системой в связи с тем, что для реализации устройств оперирующих с двоичными числами требовалось значительно меньшее количество ламп. Компьютер оперировал числами максимальной длинной в 20 разрядов .

Многие специалисты Института скептически предсказывали, что при таком количестве ламп в системе компьютер просто не сможет работать сколь-нибудь продолжительное время, чтобы выдать стоящий результат - слишком много точек отказа. Выход из строя одной лампы, одного конденсатора, или резистора, значил останов работы всей машины, и по теории вероятности существовало 1.8 миллиардов вероятностей отказа в каждую секунду . Для того, чтобы вакуумные лампы реже перегорали, Экерт придумал подавать на них минимальное напряжение, а после произведения вычислений ЭНИАК продолжал работать, поддерживая лампы в «теплом» состоянии, чтобы перепад температуры при охлаждении и накаливании не приводил к их перегоранию. Так инженеры добились того, чтобы ЭНИАК работал минимум 20 часов между поломками. Не так много по нынешним меркам, но за каждые 20 часов работы ЭНИАК выполнял месячный объём работы механических вычислителей.

В январе 1944 года, Экерт сделал первый набросок второго компьютера с более совершенным дизайном, в котором программа хранилась в памяти компьютера, а не формировалась с помощью коммутаторов и перестановки блоков, как в ЭНИАКе. Летом 1944 года военный куратор проекта Герман Голдстайн случайно познакомился со знаменитым математиком фон Нейманом и привлек его к работе над машиной. Фон Нейман внес свой вклад в проект с точки зрения строгой теории. Так был создан теоретический и инженерный фундамент для следующей модели компьютера под названием EDVAC с хранимой в памяти программой. Контракт с Армией США на создание этой машины был подписан в апреле 1946 года.

Научная работа фон Неймана «Первый проект отчёта о EDVAC (англ. )», обнародованная 30 июня 1945 года, послужила толчком к созданию вычислительных машин в США (EDVAC , BINAC , UNIVAC I) и в Англии (EDSAC). Из-за огромного научного авторитета идея о компьютере с программой, хранимой в памяти, приписывается фон Нейману («архитектура фон Неймана »), хотя приоритет на самом деле принадлежит Экерту, предложившему использовать память на ртутных акустических линиях задержки. Фон Нейман подключился к проекту позднее и просто придал инженерным решениям Мокли и Экерта академический научный смысл.

В июле 1953 года к ЭНИАКу подключен был модуль памяти на магнитных сердечниках, увеличивший объём оперативной памяти компьютера с 20 до 120 число-слов.

Влияние

ЭНИАК нельзя было назвать совершенным компьютером. Машина создавалась в военное время в большой спешке с нуля при отсутствии какого-либо предыдущего опыта создания подобных устройств. ЭНИАК был построен в единственном экземпляре, и инженерные решения, реализованные в ЭНИАКЕ, не использовались в последующих конструкциях компьютеров. ЭНИАК скорей компьютер не первого, а «нулевого» поколения. Значение ЭНИАКа заключается просто в его существовании, которое доказало возможность построения полностью электронного компьютера, способного работать достаточно продолжительное время, чтобы оправдать затраты на его постройку и принести ощутимые результаты.

В марте 1946 года Экерт и Мокли из-за споров с Пенсильванским университетом о патентах на ЭНИАК и на EDVAC , над которым они в то время работали, решили покинуть институт Мура и начать частный бизнес в области построения компьютеров. В качестве «прощального подарка» и по просьбе Армии США они прочитали в институте серию лекций о конструировании компьютеров под общим названием «Теория и методы разработки электронных цифровых компьютеров», опираясь на свой опыт построения ENIAC и проектирования EDVAC. Эти лекции вошли в историю как «Лекции Института Мура (англ. )». Лекции - по сути первые в истории человечества компьютерные курсы - читались летом 1946 года с 8 июля по 31 августа только для узкого круга специалистов США и Великобритании, работавших над той же проблемой в разных правительственных ведомствах и научных институтах, всего 28 человек. Лекции послужили отправной точкой к созданию в 40-х и 50-х года успешных вычислительных систем CALDIC, SEAC , SWAC, ILLIAC, машина Института перспективных исследований (англ. ) и компьютер Whirlwind (англ. ), использовавшийся ВВС США в первой в мире компьютерной системе ПВО SAGE.

Память о компьютере

См. также

  • EDSAC - британский компьютер, первый реализовавший «архитектуру фон Неймна» (1948)
  • EDVAC - следующий компьютер Института Мура, созданный для Армии США на принципах «архитектуры фон Неймана » (1949)

Литература

  • Herman H. Goldstine. The Computer from Pascal to von Neumann . - Princeton University Press, 1980. - 365 p. - ISBN 9780691023670 (англ.)
  • Scott McCartney. ENIAC: The Triumphs and Tragedies of the World"s First Computer . - Berkley Books, 2001. - 262 p. - ISBN 9780425176443 (англ.)
  • Raúl Rojas, Ulf Hashagen.

Компьютерная система - любое устройство или группа взаимосвязанных или смежных устройств, одно или более из которых, действуя в соответствии с программой, осуществляет автоматизированную обработку данных.

Этимология и особенности терминологии [ | код ]

Слово компьютер является производным от английских слов to compute , computer , которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computāre - «вычислять»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой .

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка . Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.

Понятие компьютер следует отличать от понятия Электронно-вычислительная машина (ЭВМ); последняя является одним из способов реализации компьютера. ЭВМ подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах - он может быть механическим, биологическим, оптическим, квантовым и т. п., работая за счёт перемещения механических частей, движения электронов , фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой (ЦВМ) и аналоговой (АВМ). С другой стороны, термин «компьютер» предполагает возможность изменения выполняемой программы (перепрограммирования), что возможно не для всех видов ЭВМ.

В настоящее время термин ЭВМ, как относящийся больше к вопросам конкретной физической реализации компьютера, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле - для обозначения компьютерной техники 1940-1980-х годов и больших вычислительных устройств, в отличие от персональных .

История [ | код ]

  • 3000 лет до н. э. - в Древнем Вавилоне были изобретены первые счёты - абак .
  • 500 лет до н. э. - в Китае появился более «современный» вариант абака с косточками на соломинках - суаньпань .
  • 87 год до н. э. - в Греции был изготовлен «антикитерский механизм » - механическое устройство на базе зубчатых передач, представляющее собой специализированный астрономический вычислитель.
  • В XIII веке Луллий Раймунд создал логическую машину в виде бумажных кругов, построенных по троичной логике.
  • 1492 год - Леонардо да Винчи в одном из своих дневников приводит эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX веке , всё же реальность проекта Леонардо да Винчи подтвердилась.

Суммирующая машина Паскаля

  • XVI век - в России появились счёты, в которых было 10 деревянных шариков на проволоке.
  • 1623 год - Вильгельм Шиккард , профессор университета Тюбингена , разрабатывает устройство на основе зубчатых колес («считающие часы ») для сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно не известно, но в 1960 году оно было воссоздано и проявило себя вполне работоспособным.
  • 1630 год - Уильям Отред и Ричард Деламейн создают круговую и прямоугольную логарифмические линейки .
  • 1642 год - Блез Паскаль представляет «Паскалину » - первое реально осуществлённое и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей, причём последние модели оперировали числами с восемью десятичными разрядами.
  • 1673 год - известный немецкий философ и математик Готфрид Вильгельм Лейбниц построил арифмометр , который выполнял умножение , деление , сложение и вычитание . Позже Лейбниц описал двоичную систему счисления и обнаружил, что если записывать определённые группы двоичных чисел одно под другим, то нули и единицы в вертикальных столбцах будут регулярно повторяться, и это открытие навело его на мысль, что существуют совершенно новые законы математики. Лейбниц решил, что двоичный код оптимален для системы механики, которая может работать на основе перемежающихся активных и пассивных простых циклов. Он пытался применить двоичный код в механике и даже сделал чертёж вычислительной машины, работавшей на основе его новой математики, но вскоре понял, что технологические возможности его времени не позволяют создать такую машину .
  • Примерно в это же время Исаак Ньютон закладывает основы математического анализа .
  • 1723 год - немецкий математик и астроном Христиан Людвиг Герстен на основе работ Лейбница создал арифметическую машину . Машина высчитывала частное и число последовательных операций сложения при умножении чисел . Кроме того, в ней была предусмотрена возможность контроля за правильностью ввода данных.
  • 1786 год - немецкий военный инженер Иоганн Мюллер в ходе работ по усовершенствованию механического калькулятора на ступенчатых валиках Лейбница, придуманного его соотечественником Филиппом Хахном , выдвигает идею «разностной машины» - специализированного арифмометра для табулирования логарифмов , вычисляемых разностным методом.
  • 1801 год - Жозеф Мари Жаккар строит ткацкий станок с программным управлением, программа работы которого задаётся с помощью комплекта перфокарт .
  • 1820 год - первый промышленный выпуск арифмометров . Первенство принадлежит французу Тома де Кальмару .
  • 1822 год - английский математик Чарльз Бэббидж изобрёл, но не смог построить, первую разностную машину (специализированный арифмометр для автоматического построения математических таблиц) (см.: Разностная машина Чарльза Бэббиджа).
  • 1840 год - Томас Фаулер (англ. Great Torrington ) построил деревянную троичную счётную машину с троичной симметричной системой счисления .
  • 1855 год - братья Георг и Эдвард Шутц (англ. George & Edvard Scheutz ) из Стокгольма построили первую разностную машину на основе работ Чарльза Бэббиджа.
  • 1876 год - русским математиком П. Л. Чебышёвым создан суммирующий аппарат с непрерывной передачей десятков. В 1881 году он же сконструировал к нему приставку для умножения и деления (арифмометр Чебышёва).
  • -1887 годы - Холлерит разработал электрическую табулирующую систему , которая использовалась в переписях населения США и 1900 годов и Российской империи в 1897 году .
  • 1912 год - создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту русского учёного А. Н. Крылова .
  • 1941 год - Конрад Цузе создаёт первую вычислительную машину , обладающую всеми свойствами современного компьютера.
  • 1942 год - в Университете штата Айова Джон Атанасов и его аспирант Клиффорд Берри (англ. Clifford Berry ) создали (а точнее - разработали и начали монтировать) первый в США электронный цифровой компьютер ABC . Хотя эта машина так и не была завершена (Атанасов ушёл в действующую армию), она, как пишут историки, оказала большое влияние на Джона Мокли , создавшего двумя годами позже ЭВМ ЭНИАК .
  • Конец 1943 года - заработала британская вычислительная машина специального назначения Colossus . Машина работала над расшифровкой секретных кодов фашистской Германии.
  • Февраль 1944 года - группой американских инженеров под руководством Говарда Эйкена закончена разработка первой американской вычислительной машины Марк I . После монтажа, наладки и испытаний она стала использоваться для выполнения сложных баллистических расчётов американского ВМФ .
  • 1944 год - Конрад Цузе разработал ещё более быстрый компьютер , а также первый язык программирования высокого уровня Планкалкюль .
  • 1946 год - публике представлена первая универсальная электронная цифровая вычислительная машина ЭНИАК , разрабатывавшаяся секретно с 1943 года.
  • 4 декабря 1948 года - Государственный комитет Совета министров СССР по внедрению передовой техники в народное хозяйство зарегистрировал за номером 10475 изобретение И. С. Бруком и Б. И. Рамеевым цифровой электронной вычислительной машины.
  • 1950 год - группой Лебедева в Киеве создана первая советская электронная вычислительная машина.
  • 1957 год - американской фирмой NCR создан первый компьютер на транзисторах .
  • 1958 год - Н. П. Брусенцов с группой единомышленников построил первую троичную ЭВМ с позиционной симметричной троичной системой счисления «Сетунь ».

Экспоненциальное развитие компьютерной техники [ | код ]

Квантовые ЭВМ [ | код ]

Классификация [ | код ]

По назначению [ | код ]

  • Настольный
    • Сервер
  • Интернет-устройство

Суперкомпьютеры [ | код ]

  • Мини
  • Мейнфрейм (супермощный отказоустойчивый сервер)

Малые и мобильные [ | код ]

  • Ноутбук
    • Субноутбук
  • Планшетный ПК
  • Терминал

Другие [ | код ]

Элементная основа цифрового компьютера [ | код ]

  • ферритдиодные
  • транзисторные дискретные
  • транзисторные интегральные

Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

Физическая реализация [ | код ]

Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Самые ранние компьютеры были полностью механическими системами. Тем не менее, уже в 1930-х годах телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 1940-х были созданы первые полностью электронные компьютеры, имевшие в своей основе электронные лампы . В -1960-х годах на смену лампам пришли транзисторы , а в конце 1960-х - начале 1970-х годов - используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

В настоящее время ведутся серьёзные работы по созданию оптических компьютеров , использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК . И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров .

Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

  • Механический компьютер
  • Электронный компьютер
  • Биокомпьютер

По способностям [ | код ]

Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

  • специализированные устройства, умеющие выполнять только одну функцию (например, Антикитерский механизм 87 года до н. э. или ниточный предсказатель Вильяма Томсона 1876 года);
  • устройства специального назначения, которые могут выполнять ограниченный диапазон функций (первая разностная машина Чарльза Бэббиджа и разнообразные дифференциальные анализаторы);
  • устройства общего назначения, используемые сегодня. Название компьютер применяется, как правило, именно к машинам общего назначения .

Современный компьютер общего назначения [ | код ]

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга . Первым компьютером, удовлетворяющим такому условию, считается машина , созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Конструктивные особенности [ | код ]

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый [ | код ]

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Среди наиболее простых дискретных вычислителей известен абак , или обыкновенные счёты ; наиболее сложной из такого рода систем является суперкомпьютер .

Система счисления [ | код ]

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I .

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме . Это значительно упростило конструкции вычислительных устройств и периферийного оборудования . Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера - любой компьютер может эмулировать любой другой.

В 1936 году молодой немецкий инженер-энтузиаст Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей. Ввод команд и данных осуществлялся при помощи клавиатуры, а вывод, -- с помощью маленькой панели на лампочках. Память вычислителя организовывалась при помощи конденсатора.

В 1939 году, Цузе создал второй вычислитель -- Z2. Z2 работала на реле. Следующая машина Цузе -- Z3, была завершена в 1941 году

Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой. Замена сложной в реализации десятичной системы на двоичную сделала машины Цузе более простыми, а значит, более надёжными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу. Программы для Z3 хранились на перфорированной плёнке. Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 являетсяуниверсальным компьютером В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти, что и данные -- предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.

В сентябре 1950 года Z4 был, наконец, закончен и поставлен в ETH Zьrich. В то время он был единственным работающим компьютером в континентальной Европе и первым компьютером в мире, который был продан. В этом Z4 на пять месяцев опередил Марк I и на десять -- UNIVAC. Компьютер эксплуатировался в ETH Zьrich до 1955 года, после чего был передан во Французский аэродинамический научно-исследовательский институт недалеко от Базеля, где работал до 1960 года. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 -- первый компьютер с памятью на магнитных носителях.

В 1939 году Джон Атанасов и Клиффорд Берри из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре. Соизобретатель ENIAC Джон Мокли изучал ABC в июне 1941 года, и между историками существуют споры о степени его влияния на разработку машин, последовавших за ENIAC.

В 1939 году в Endicott laboratories в IBM началась работа над Harvard Mark I. Официально известный как Automatic Sequence Controlled Calculator, Mark I был электромеханическим компьютером общего назначения, созданного с финансированием IBM и при помощи со стороны персонала IBM, под руководством гарвардского математика Говарда Айкена. Проект компьютера был создан под влиянием Аналитической машины Ч. Бэббиджа, с использованием десятичной арифметики, колёс для хранения данных и поворотных переключателей в дополнение к электромагнитным реле. Машина программировалась с помощью перфоленты, и имела несколько вычислительных блоков, работающих параллельно.