Пропорционально-интегральный дифференциальный (ПИД)- закон регулирования.

09.08.2019 Ios

Закон регулирования - это зависимость перемещения регулирующего органа от отклонения регулируемой переменной. Качество регулирования обеспечивается выбором закона регулирования. Наибольшее распространение получили следующие пять основных законов регулирования: двухпозиционный , пропорциональный , интегральный , дифференциальный и пропорционально-интегрально-дифференциальный (ПИД) .

Двухпозиционный закон регулирования - это «Двухпозиционное регулирование», которое называют еще «Старт-стопное регулирование». Чтобы моделировать двухпозиционный режим регулирования, оператор на рисунке выше устанавливал бы регулирующий клапан в одно из двух крайних положений: или полностью открыт, или полностью закрыт, то есть «включено» или «выключено». Так, например, если уровень будет низким, оператор откроет клапан полностью, чтобы вода могла наполнить резервуар. Затем, как только вода достигнет желаемого уровня, оператор полностью закроет клапан, чтобы прекратить приток воды в резервуар.

Чтобы моделировать пропорциональный закон регулирования , оператор непрерывно устанавливал бы регулирующий клапан в положение, отвечающее произошедшему на данный момент изменению уровня. Так, например, если уровень понизился немного, оператор откроет клапан немного; если уровень понизился еще больше, оператор увеличит степень открытия клапана. Наоборот, если уровень несколько повысится, оператор уменьшит степень открытия клапана на соответствующую величину. Таким образом, моделируя пропорциональное регулирование, оператор непрерывно в соответствии с изменением уровня изменяет положение клапана. Регулирование уровня при этом будет выполняться более эффективно, чем при простом открытии и закрытии клапана. Когда изменения уровня прекращаются, оператор прекращает позиционирование клапана.

Так как при пропорциональном регулировании выходной корректирующий сигнал вырабатывается на изменения регулируемой переменной процесса, пропорциональный регулятор не дает выходного управляющего сигнала, если регулируемая переменная процесса не изменяется. Например, когда уровень в резервуаре изменяется, оператор открывает или закрывает клапан пропорционально этим изменениям. Когда изменения уровня прекращаются, оператор останавливает позиционирование клапана. При этом уровень установится на некоторой отметке, но это может не быть заданное значение уровня. Это означает, что при пропорциональном регулировании может быть смещение регулируемой переменной процесса или ошибка регулирования. В определенных системах это вполне приемлемо. Если же смещение регулируемой переменной не допускается, надо применить другой закон регулирования: интегральный, при котором обеспечивается возвращение регулируемой переменной к уставке.

Чтобы моделировать закон интегрального регулирования , оператор продолжает открывать или закрывать клапан так долго пока уровень отклоняется от уставки в независимости от того происходят ли при этом произвольные изменения уровня или не происходят. Так, например, если уровень немного понизился, оператор приоткроет клапан немного. Затем, даже если уровень перестал изменяться, оператор продолжит открывать клапан пока уровень не возвратится к заданному значению (уставке).

Рисунок выше иллюстрирует процесс, который может требовать применения другого закона регулирования. Этот процесс - тот же самый процесс поддержания уровня из первого примера, отличающийся лишь тем, что емкость резервуара много больше, в то время как питательная труба остается той же самой. Это означает, что, когда оператор открывает или закрывает клапан как прежде, оказывается меньшее непосредственное влияние на уровень в резервуаре. При увеличения уровня, пропорциональное регулирование могло бы отработать воздействия, направленные на снижение уровня, но действие не было бы достаточно быстрым, чтобы поддерживать уровень внутри желательных ограничений.

Закон дифференциального регулирования используется, чтобы предотвратить чрезмерное отклонение регулируемой переменной от уставки, вырабатывая корректирующее воздействие пропорциональное скорости отклонения. Так, моделируя дифференциальный закон регулирования, оператор изменяет степень открытия регулирующего клапана в соответствии со скоростью возрастания отклонения уровня от уставки. Например, если уровень начал понижаться, оператор быстро увеличит степень открытия приточного клапана (при чем эти изменения положения клапана большие, чем при чисто пропорциональном законе регулирования), чтобы замедлить скорость изменения уровня и, в конечном счете, стабилизировать уровень. Если уровень начал быстро понижаться, оператор должен быстро и значительно открыть клапан, чтобы замедлить скорость падения уровня и потом его стабилизировать.

Последним мы рассмотрим пропорционально-интегрально-дифференциальный закон регулирования . Чтобы воспроизвести этот закон регулирования, оператор изменяет положение регулирующего клапана в зависимости от величины отклонения, скорости изменения и продолжительности рассогласования. Другими словами, оператор в этом случае объединяет пропорциональный, интегральный и дифференциальный законы регулирования.

ПИ-регулятор является одним из наиболее универсальных регуляторов. Фактически ПИ-регулятор – это с дополнительной интегральной составляющей. И-составляющая, дополняющая алгоритм, в первую очередь нужна для устранения статической ошибки, которая характерна для пропорционального регулятора. По сути, интегральная часть является накопительной, и таким образом позволяет осуществить то, что ПИ-регулятор учитывает в данный момент времени предыдущую историю изменения входной величины. Если добавить к алгоритму дифференциальную составляющую - он трансформируется в .

ПИ-регулятор. Формула выходного сигнала:

  • U(t) – выходной сигнал
  • P – пропорциональная часть
  • I – интегральная часть
  • K – коэффициент пропорциональности
  • Tи – постоянная интегрирования (время изодрома).
  • ?(t) – сигнал рассогласования, разница между сигналом обратной связи и заданием (может быть заменен другими сигналами, в зависимости от структурной схемы системы, но суть та же.)

ПИ-регулятор. Передаточная функция:

W(p)= K(1+1/Tи*s) или W(p)= K+1/Tи*s;

Из формулы видно, что п-составляющая складывается с накопленной и-составляющей за время t. Фактически, ПИ-регулятор «учится» на предыдущем опыте. Если система не испытывает внешних возмущений – регулируемая величина стабилизируется на заданном значении: П-составляющая будет равняться 0, а интегральная составляющая полностью обеспечит выходной сигнал.

ПИ-регулятор можно получить – параллельным. Составим в MatLab схему из двух параллельно соединенных звеньев – к и 1/Ти. Дадим запаздывание в 1 секунду, чтобы увидеть выход в начальный момент времени.

Рассмотрим ПИ-регулятора. Переходная характеристика – реакция на единичное ступенчатое возмущение. Смоделируем в среде MatLab несколько переходных процессов для различных ситуаций.

  • ПИ-регулятор. H(t).

С графика видно, что переходная характеристика ПИ-регулятора состоит из сложенных пропорциональной и интегральной. Чем больше к, тем больше будет пропорциональный заброс на графике.

  • ПИ-регулятор. Влияние Ти.

Рассмотрим на примере нескольких Ти на ПИ-регулятор, его выход и вид переходного процесса. Смоделируем несколько параллельных процессов с выводом на один Scope с помощью Mux.

В данном разделе приведены описания алгоритмов работы и непрерывных П-, ПИ-, ПД-, ПИД-регуляторов с различными структурами выходного сигнала - аналоговым выходом, дискретным (импульсным) выходом или ШИМ-выходом (широтно импульсным модулированным сигналом).

Структурные схемы непрерывных регуляторов

В данном разделе приведены структурные схемы непрерывных регуляторов с аналоговым выходом -рис.2, с импульсным выходом - рис.3 и с ШИМ (широтно импульсным модулированным) выходом -рис.4.

В процессе работы система автоматического регулирования АР (регулятор) сравнивает текущее значение измеряемого параметра Х, полученного от датчика Д, с заданным значением (заданием SP) и устраняет рассогласование регулирования E (B=SP-PV). Внешние возмущающие воздействия Z также устраняются регулятором. Работа приведенных структурных схем отличается методом формирования выходного управляющего сигнала регулятора.

Непрерывный регулятор с аналоговым выходом

Структурная схема непрерывного регулятора с аналоговым выходом приведена на рис.2.

Выход Y регулятора АР (например, сигнал 0-20мА, 4-20мА, 0-5мА или 0-10В) воздействует через электропневматический Е/Р сигналов (например, с выходным сигналом 20-100кПа) или электропневматический позиционный регулятор на исполнительный элемент К (регулирующий орган).

Рисунок 2 - Структурная схема регулятора с аналоговым выходом

где:
АР - непрерывный ПИД-регулятор с аналоговым выходом,



Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством)
Y - выходной аналоговый управляющий сигнал Е/Р - электропневматический преобразователь,

Непрерывный регулятор с импульсным выходом

Структурная схема непрерывного регулятора с импульсным выходом приведена на рис.3.

Выходные управляющие сигналы регулятора - сигналы Больше и Меньше (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Рисунок 3 - Структурная схема регулятора с импульсным выходом

где:
АР - непрерывный ПИД-регулятор с импульсным выходом,
SP - узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е - рассогласование регулятора,
Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством) ИМП - импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100. Сигналы Больше и Меньше - управляющие воздействия,

К - клапан регулирующий (регулирующий орган).

Непрерывный регулятор с ШИМ (широтно импульсным модулированным) выходом

Структурная схема непрерывного регулятора с ШИМ (широтно импульсным модулированным) выходом приведена на рис.4.

Выходной управляющий сигнал регулятора (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Непрерывные регуляторы с ШИМ выходом широко применяются в системах регулирования температуры, где выходной управляющий симисторный элемент (или твердотельное реле, пускатель) воздействуют на термоэлектрический нагреватель ТЭН, или вентилятор.

Рисунок 4 - Структурная схема регулятора с ШИМ выходом

АР - непрерывный ПИД-регулятор с импульсным ШИМ выходом,
SP - узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е - рассогласование регулятора,
Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством) ШИМ - импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100.
П - пускатель контактный или бесконтактный,
К - клапан регулирующий (регулирующий орган).

Согласование выходных устройств непрерывных регуляторов

В ыходной сигнал регулятора должен быть согласован с исполнительным механизмом и исполнительным устройством.

В соответствии с видом привода и исполнительным механизмом необходимо использовать выходное устройство непрерывного регулятора соответствующего типа, см. таблицу 1.

Таблица 1 - Согласование выходных устройств непрерывных регуляторов

Выходное устройство непрерывного регулятора Тип выходного устройства Исполнительный механизм или устройство Вид привода Регулирующий орган
Аналоговый выход ЦАП с выходом 0-5мА, 0-20мА, 4-20мА, 0-10В П-, ПИ-,ПД-, ПИД-закон Преобразователи и позиционные регуляторы электро-пневматические и гидравлические Пневматические исполнительные приводы (с сжатым воздухом в качестве вспомогательной энергии) и электропневматические преобразователи сигналов или электропневматические позиционные регуляторы, электрические (частотные привода)
Импульсный выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Электрические приводы (с редуктором), в т. ч. реверсивные
ШИМ выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Термоэлектрический нагреватель(ТЭН) и др.

Реакция регулятора на единичное ступенчатое воздействие

Если на вход регулятора подается скачкообразная функция изменения заданной точки - см. рис. 5, то на выходе регулятора возникает реакция на единичное ступенчатое воздействие в соответствии с характеристикой регулятора в функции времени.

Значительно улучшить точность регулирования можно применением ПИД-закона (Пропорционально-Интегрально-Дифференциальный закон регулирования).
Для реализации ПИД-закона используются три основные переменные:
P – зона пропорциональности, %;
I – время интегрирования, с;
D – время дифференцирования, с.
Ручная настройка ПИД-регулятора (определение значений параметров Р, I, D), обеспечивающая требуемое качество регулирования, достаточно сложна и на практике редко используется. ПИД-регуляторы серии UT/UP обеспечивают автоматическую настройку ПИД-параметров под конкретный процесс регулирования, сохраняя при этом возможность их ручной корректировки.

Пропорциональная составляющая
В зоне пропорциональности, определяемой коэффициентом Р, сигнал управления будет изменяться пропорционально разнице между уставкой и действительным значением параметра (рассогласованию):

сигнал управления = 100/P E,

где E – рассогласование.
Коэффициент пропорциональности (усиления) К является величиной обратнопропорциональной Р:

Зона пропорциональности определяется относительно заданной уставки регулирования, и внутри этой зоны сигнал регулирования изменяется от 0 до 100%, т. е. при равенстве действительного значения и уставки выходной сигнал будет иметь значение 50%.

где Р – зона пропорциональности;
ST – уставка регулирования.
Например:
диапазон измерения 0…1000 °С;
уставка регулирования ST = 500 °С;
зона пропорциональности P = 5%, что составляет 50 °С (5% от 1000 °С);
при значении температуры 475 °С и ниже управляющий сигнал будет иметь величину 100%; при 525 °С и выше – 0%. В диапазоне 475…525 °С (в зоне пропорциональности) управляющий сигнал будет изменяться пропорционально величине рассогласования с коэффициентом усиления К = 100/Р = 20.
Уменьшение значения зоны пропорциональности Р увеличивает реакцию регулятора на рассогласование, т. е. малому рассогласованию будет соответствовать большее значение управляющего сигнала. Но при этом, из-за большого усиления, процесс принимает колебательный характер около значения уставки, и точного регулирования добиться не удастся. При излишнем увеличении зоны пропорциональности регулятор будет слишком медленно реагировать на образующееся рассогла­сование и не сможет успевать отслеживать динамику процесса. Для того, чтобы компенсировать эти недостатки пропорционального регулирования, вводится дополнительная временная характеристика – интегральная составляющая.

Интегральная составляющая
Определяется постоянной времени интегрирования I, является функцией времени и обеспечивает изменение коэффициента усиления (сдвиг зоны пропорциональности) на заданном промежутке времени.


сигнал управления = 100/P E + 1/I ∫ E dt.

Как видно из рисунка, если пропорциональная составляющая закона регулирования не обеспечивает уменьшение рассогласования, то интегральная составляющая начинает на периоде времени I плавно увеличивать коэффициент усиления. Через период времени I процесс этот повторяется. Если же рассогласование мало (или быстро уменьшается), то коэффициент усиления не увеличивается и, в случае равенства значения параметра заданной уставке, принимает какое-то минимальное значение. В этом плане об интегральной составляющей говорят как о функции автоматического выключения регулирования. В случае регулирования по ПИД-закону переходная характеристика процесса будет представлять собой колебания, постепенно затухающие к значению уставки.

Дифференциальная составляющая
Многие объекты регулирования достаточно инерционны, т. е. имеют задержку реакции на приложенное воздействие (мертвое время) и продолжают реагировать после снятия управляющего воздействия (время задержки). ПИД-регуляторы на таких обьектах будут всегда запаздывать с включением/выключением управляющего сигнала. Для устранения этого эффекта вводится дифференциальная составляющая, определяемая постоянной времени дифференцирования D, и обеспечивается полная реализация ПИД-закона управления. Дифференциальная составляющая есть производная во времени от рассогласования, т. е. является функцией скорости изменения параметра регулирования. В случае, когда рассогласование становится постоянной величиной, дифференциальная составляющая перестает оказывать воздействие на сигнал управления.

сигнал управ. = 100/P E + 1/I ∫ E dt + D d/dt E.

С введением дифференциальной составляющей регулятор начинает учитывать мертвое время и время задержки, заранее изменяя сигнал управления. Это позволяет значительно уменьшить колебания процесса около значения уставки и добиться более быстрого завершения переходного процесса.
Таким образом, ПИД-регуляторы, генерируя управляющий сигнал, учитывают характеристики самого объекта управления, т.е. проводят анализ рассогласования на величину, на продолжительность и скорость изменения. Иными словами, ПИД-регулятор "предвидит" реакцию объекта регулирования на сигнал управления и начинает изменять управляющее воздействие не при достижении значения уставки, а заранее.

5. Передаточная функция какого звена представлена: К(р) = К/Тр

Особенности П, ПИ и ПИД регулирования

Наличие в приборах функции выходного устройства ПИД регулирования подразумевает возможность реализации трех типов регулирования: П-, ПИ- и ПИД регулирования.

П регулирование . Выходная мощность прямопропорциональна ошибке регулирования. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования. Пропорциональное регулирование можно рекомендовать для малоинерционных систем с большим коэффициентом передачи. Для настройки пропорционального регулятора следует сначала установить коэффициент пропорциональности максимальным, при этом выходная мощность регулятора уменьшится до нуля. После стабилизации измеренного значения, следует установить заданное значение и постепенно уменьшать коэффициент пропорциональности, при этом ошибка регулирования будет уменьшаться. Когда в системе возникнут периодические колебания, коэффициент пропорциональности следует увеличить так, чтобы ошибка регулирования была минимальной, а периодические колебания максимально уменьшились.

ПИ регулирование. Выходная мощность равна сумме пропорциона- льной и интегральной составляющих. Чем больше коэффициент пропор- циональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая. ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности - максимальным. Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний. Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования - на 20% меньше периода колебаний.

ПИД регулирование. Выходная мощность равна сумме трех состав- ляющих: пропорциональной, интегральной и дифференциальной. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая, чем больше постоянная времени дифференцирования, тем сильнее реакция системы на возмущающее воздействие. ПИД-регулятор применяется в инерционных системах с относительно малым уровнем помех измерительного канала. Достоинством ПИД регулятора является быстрый выход на режим, точное удержание заданной температуры и быстрая реакция на возмущающие воздействия. Ручная настройка ПИД является крайне сложной, поэтому рекомендуется использовать функцию автонастройки.

Автонастройка ПИД регулирования в приборах ЧАО “ТЭРА”:

Главное, что определяет качество ПИД регулятора - это его способность точно и быстро выходить на заданную температуру, для чего у всех современных ПИД регуляторов обязательно присутствует функция автонастройки. Стандартных алгоритмов автонастройки ПИД не существуют, на практике каждый производитель применяет свой собственный алгоритм. Поэтому, пользователь, приобретая один и тот же товар под названием “ПИД регулятор” у разных производителей, на своем объекте может получить совсем разные результаты их применения. Основными достоинствами алгоритма автонастройки в ПИД регуляторах ЧАО “ТЭРА” являются:

  • автонастройка и выход на регулирование без перерегулирования (у стандартных ПИД регуляторов перерегулирование может достигать 50-70% от заданной температуры, что на некоторых объектах регулирования технологически нежелательно или вообще запрещено)
  • продолжительность автонастройки в среднем в 2 раза короче, чем у других производителей (крайне важная характеристика для объектов регулирования с часто изменяемыми свойствами, особенно для инерционных объектов)

Автонастройку можно производить при любом стабильном состоянии объекта регулирования. Кроме того, чем больше разность между начальной и заданной температурой, тем точнее определяются коэффициенты ПИД регулятора. Все коэффициенты ПИД хранятся в энергонезависимой памяти прибора.

Автонастройку необходимо повторить, если:

  • изменилась мощность исполнительного устройства
  • изменились физические свойства объекта регулирования (масса, емкость, теплообмен и т.п.)
  • объект регулирования заменен другим неидентичным
  • при значительном изменении заданной температуры