Проектирование информационных систем и сетей. Разработка интерфейса и дизайна информационной системы

30.10.2019 Ios

экранных форм , отчетов, которые будут обеспечивать выполнение запросов к данным;
  • учет конкретной среды или технологии, а именно: топологии сети, конфигурации аппаратных средств, используемой архитектуры (файл-сервер или клиент-сервер), параллельной обработки, распределенной обработки данных и т.п.
  • Проектирование информационных систем всегда начинается с определения цели проекта . В общем виде цель проекта можно определить как решение ряда взаимосвязанных задач, включающих в себя обеспечение на момент запуска системы и в течение всего времени ее эксплуатации:

    • требуемой функциональности системы и уровня ее адаптивности к изменяющимся условиям функционирования;
    • требуемой пропускной способности системы;
    • требуемого времени реакции системы на запрос;
    • безотказной работы системы;
    • необходимого уровня безопасности;
    • простоты эксплуатации и поддержки системы.

    Согласно современной методологии, процесс создания ИС представляет собой процесс построения и последовательного преобразования ряда согласованных моделей на всех этапах жизненного цикла (ЖЦ) ИС. На каждом этапе ЖЦ создаются специфичные для него модели - организации, требований к ИС, проекта ИС, требований к приложениям и т.д. Модели формируются рабочими группами команды проекта , сохраняются и накапливаются в репозитории проекта. Создание моделей, их контроль , преобразование и предоставление в коллективное пользование осуществляется с использованием специальных программных инструментов - CASE-средств.

    Процесс создания ИС делится на ряд этапов (стадий [ 1.1 ]), ограниченных некоторыми временными рамками и заканчивающихся выпуском конкретного продукта (моделей, программных продуктов, документации и пр.).

    Обычно выделяют следующие этапы создания ИС : формирование требований к системе, проектирование, реализация, тестирование, ввод в действие, эксплуатация и сопровождение [ 1.1 ] [ 1.2 ] . (Последние два этапа далее не рассматриваются, поскольку выходят за рамки тематики курса.)

    Начальным этапом процесса создания ИС является моделирование бизнес-процессов, протекающих в организации и реализующих ее цели и задачи. Модель организации, описанная в терминах бизнес-процессов и бизнес-функций, позволяет сформулировать основные требования к ИС. Это фундаментальное положение методологии обеспечивает объективность в выработке требований к проектированию системы. Множество моделей описания требований к ИС затем преобразуется в систему моделей, описывающих концептуальный проект ИС. Формируются модели архитектуры ИС, требований к программному обеспечению ( ПО ) и информационному обеспечению (ИО). Затем формируется архитектура ПО и ИО, выделяются корпоративные БД и отдельные приложения, формируются модели требований к приложениям и проводится их разработка, тестирование и интеграция .

    Целью начальных этапов создания ИС , выполняемых на стадии анализа деятельности организации, является формирование требований к ИС, корректно и точно отражающих цели и задачи организации-заказчика. Чтобы специфицировать процесс создания ИС, отвечающей потребностям организации, нужно выяснить и четко сформулировать, в чем заключаются эти потребности. Для этого необходимо определить требования заказчиков к ИС и отобразить их на языке моделей в требования к разработке проекта ИС так, чтобы обеспечить соответствие целям и задачам организации.

    Задача формирования требований к ИС является одной из наиболее ответственных, трудно формализуемых и наиболее дорогих и тяжелых для исправления в случае ошибки. Современные инструментальные средства и программные продукты позволяют достаточно быстро создавать ИС по готовым требованиям. Но зачастую эти системы не удовлетворяют заказчиков, требуют многочисленных доработок, что приводит к резкому удорожанию фактической стоимости ИС. Основной причиной такого положения является неправильное, неточное или неполное определение требований к ИС на этапе анализа.

    На этапе проектирования прежде всего формируются модели данных. Проектировщики в качестве исходной информации получают результаты анализа. Построение логической и физической моделей данных является основной частью проектирования базы данных . Полученная в процессе анализа информационная модель сначала преобразуется в логическую, а затем в физическую модель данных .

    Параллельно с проектированием схемы базы данных выполняется проектирование процессов, чтобы получить спецификации (описания) всех модулей ИС. Оба эти процесса проектирования тесно связаны, поскольку часть бизнес-логики обычно реализуется в базе данных (ограничения, триггеры, хранимые процедуры). Главная цель проектирования процессов заключается в отображении функций, полученных на этапе анализа, в модули информационной системы. При проектировании модулей определяют интерфейсы программ: разметку меню , вид окон, горячие клавиши и связанные с ними вызовы.

    Конечными продуктами этапа проектирования являются:

    • схема базы данных (на основании ER-модели, разработанной на этапе анализа);
    • набор спецификаций модулей системы (они строятся на базе моделей функций).

    Кроме того, на этапе проектирования осуществляется также разработка архитектуры ИС, включающая в себя выбор платформы (платформ) и операционной системы (операционных систем). В неоднородной ИС могут работать несколько компьютеров на разных аппаратных платформах и под управлением различных операционных систем. Кроме выбора платформы, на этапе проектирования определяются следующие характеристики архитектуры:

    • будет ли это архитектура "файл-сервер" или "клиент-сервер";
    • будет ли это 3-уровневая архитектура со следующими слоями: сервер, ПО промежуточного слоя (сервер приложений), клиентское ПО;
    • будет ли база данных централизованной или распределенной. Если база данных будет распределенной, то какие механизмы поддержки согласованности и актуальности данных будут использоваться;
    • будет ли база данных однородной, то есть, будут ли все серверы баз данных продуктами одного и того же производителя (например, все серверы только Oracle или все серверы только DB2 UDB). Если база данных не будет однородной, то какое ПО будет использовано для обмена данными между СУБД разных производителей (уже существующее или разработанное специально как часть проекта);
    • будут ли для достижения должной производительности использоваться параллельные серверы баз данных (например, Oracle Parallel Server, DB2 UDB и т.п.).

    Этап проектирования завершается разработкой технического проекта ИС.

    На этапе реализации осуществляется создание программного обеспечения системы, установка технических средств, разработка эксплуатационной документации.

    Проектированием информационных систем называется многоступенчатый процесс их создания и/или модернизации путём применения упорядоченной совокупности методологий и инструментария. Проектирование (в отличие от моделирования) предполагает работу с пока несуществующим объектом и направлено на создание информационной системы в области:

    • обработки объектов будущей базы данных,
    • написания программ (в том числе - отчётных и экранных форм), обеспечивающих выполнение запросов к данным,
    • выполнения учёта функционирования конкретной среды (технологии).

    Если выделять стадию проектирования информационных систем в качестве отдельного этапа, то его можно разместить между этапами анализа и разработки. Однако на практике чёткое разделение на этапы, как правило, затруднено или невозможно, поскольку проектирование, формально начинаясь с определения цели проекта, часто продолжается на стадиях тестирования и реализации.

    Цель проектирования информационной системы и связанные понятия

    Современные руководители государственных и частных организаций отдают себе отчёт в том, что скорость обработки информации, которая постоянно изменяется и растёт в объёме, – это вопрос выживания компании на рынке и конкурентное преимущество. В общем виде целевые установки проектов по созданию информационных систем сводятся к обеспечению условий, позволяющих эту информацию получать, обрабатывать и использовать путём создания функциональной безотказной системы с достаточным:

    • уровнем адаптивности к изменяемым условиям,
    • пропускной способностью,
    • временем системной реакции на запрос,
    • уровнем безопасности,
    • степенью простоты в эксплуатации.

    Информационной системой (ИС) называют совокупность информации, содержащейся в базе данных, и технологий (а также технических инструментов), обеспечивающих обработку информации. В данном случае, к технологиям относят и методы обнаружения, сбора, обработки, хранения, распространения информации, и способы, которые позволяют эти методы реализовать. Информационное управление при этом сводится к применению данных методов для контроля за процессами планирования, дизайна, эксплуатации и анализа ИС. В основе технологии проектирования лежит выбранная для конкретной задачи методология как совокупность принципов, выраженная в единой определённой концепции.

    Организация проектирования ИС

    Организацию проектирования ИС принято разделять на 2 типа:

    1. Каноническое проектирование отражает особенности технологии оригинального (индивидуального) процесса.
    2. Типовое проектирование, для которого характерно типовое проектное решение (ТПР), тиражируется и пригодно к многократному использованию.

    Каноническое проектирование отличает отражение ручной технологии проектирования, осуществление на уровне исполнителей, использование инструментария универсальной компьютерной поддержки.

    Применяется каноническое проектирование, главным образом, для локальных и относительно небольших ИС с минимальным использованием типовых решений. Адаптация проектных решений происходит только посредством перепрограммирования программных модулей.

    Организовывается каноническое проектирование с использованием каскадной модели жизненного цикла. Это предполагает разделение процесса на следующие стадии и этапы:

    1. Предпроектная стадия. Производится предпроектный анализ и составляется техническое задание. То есть, формируются требования к ИС, разрабатывается её концепция, составляется технико-экономическое обоснование и пишется ТЗ.
    2. Проектная стадия предусматривает составление эскизного и технического проектов, разработку рабочей документации.
    3. Послепроектная стадия даёт старт мероприятиям по внедрению ИС, обучению персонала, анализу результатов испытания. Частью этой стадии становится сопровождение ИС и устранение выявленных недостатков.

    Этапы, в случае необходимости, можно укрупнять или детализировать – объединять последовательные этапы, исключать «лишние», начинать выполнение очередной стадии до завершения предыдущей.

    Метод типового проектирования отличается возможностью декомпозиции проектируемой ИС с разделением на компоненты, в число которых входят программные модули, подсистемы, комплексы задач и др. Для реализации компонентов можно воспользоваться типовыми решениями, которые уже существуют на рынке, и настроить их под нужны конкретной организации. При этом типовое проектирование предполагает обязательное наличие документации, описывающей в деталях ТПР и процедуры настройки.

    Декомпозиция может иметь несколько уровней, что позволяет выделить классы ТПР:

    • элементные – по отдельной задаче (элементу),
    • подсистемные – по отдельным подсистемам,
    • объектные – отраслевые типовые проектные решения, содержащие весь набор подсистем.

    Возможность реализации модульного подхода считается достоинством элементных ТПР. Однако в случае несовместимости разных элементов процесс их объединение приводит к увеличению затрат. Подсистемные ТПР, помимо реализации модульного подхода, дают возможность провести параметрическую настройку на объекты разных уровней управления. Проблемы с объединением возникают в случае привлечения продукта нескольких разных производителей ПО. Кроме того, адаптивность ТПР с позиций непрерывного реинжиниринга процессов считается недостаточной. Объектные ТПР, по сравнению с предыдущими классами, отличаются большим количеством достоинств:

    • масштабируемостью, что делает возможным применение конфигураций ИС для разного числа рабочих мест,
    • методологическим единством компонентов,
    • совместимостью компонентов ИС,
    • открытостью архитектуры – возможностью развёртывать проектные решения на платформах различного типа,
    • конфигурируемостью – возможностью применения нужного подмножества компонентов ИС.

    В ходе реализации типового проектирования применяются параметрически-ориентированный и модельно-ориентированный подходы.

    Основные методологии проектирования ИС

    Специфические особенности процесса проектирования позволяют выделять методологии, построенные на разных принципах. Среди основных современных методологий проектирования ИС называют следующие:

    • SADT . Методология функционального моделирования работ, которая основана на структурном анализе и графическом представлении организации как системы функций. Тут выделяется функциональная, информационная и динамическая модели. В настоящее время методология известна как нотация (стандарт) IDEF0. Анализируемый процесс графически представляется в виде четырёхугольника, где сверху изображаются регламентирующие и управляющие воздействия, снизу – объекты управления, слева – входные данные, а справа – выходные.
    • RAD . Методология быстрой разработки приложений. В RAD быстрая разработка приложений возможна за счёт применения компонентно-ориентированного конструирования. Методология применяется на проектах с ограниченным бюджетом, нечёткими требованиями к ИС, при сжатых сроках реализации. К ней прибегают, если пользовательский интерфейс можно продемонстрировать в прототипе, а проект разделить на функциональные элементы.
    • RUP . В методологии RUP реализуются итерационный и наращиваемый (инкрементный) подходы. Построение системы происходит на базе архитектуры информационной системы, а планирование и проектное управление – на базе функциональных требований к ИС. Разработка общей информационной системы происходит итерациями, как комплекс отдельных небольших проектов со своими планами и задачами. Для итерационного цикла характерна периодическая обратная связь и адаптация к ядру ИС.

    Существуют несколько классификаций методологий: по использованию ТПР, по применению средств автоматизации и др. Например, по степени адаптивности выделяются реконструкции (когда происходит перепрограммирование модулей), параметризации (когда изменение параметров влечёт за собой генерацию проектного решения), реструктуризации (когда изменение модели проблемной области сопровождается автоматическим генерированием проектного решения).

    Введение

    Проектирование информационных систем всегда начинается с определения цели проекта. Основная задача любого успешного проекта заключается в том, чтобы на момент запуска системы и в течение всего времени ее эксплуатации можно было обеспечить:

    • требуемую функциональность системы и степень адаптации к изменяющимся условиям ее функционирования;
    • требуемую пропускную способность системы;
    • требуемое время реакции системы на запрос;
    • безотказную работу системы в требуемом режиме, иными словами - готовность и доступность системы для обработки запросов пользователей;
    • простоту эксплуатации и поддержки системы;
    • необходимую безопасность.

    Производительность является главным фактором, определяющим эффективность системы. Хорошее проектное решение служит основой высокопроизводительной системы.

    Проектирование информационных систем охватывает три основные области:

    • проектирование объектов данных, которые будут реализованы в базе данных;
    • проектирование программ, экранных форм, отчетов, которые будут обеспечивать выполнение запросов к данным;
    • учет конкретной среды или технологии, а именно: топологии сети, конфигурации аппаратных средств, используемой архитектуры (файл-сервер или клиент-сервер), параллельной обработки, распределенной обработки данных и т.п.

    В реальных условиях проектирование - это поиск способа, который удовлетворяет требованиям функциональности системы средствами имеющихся технологий с учетом заданных ограничений.

    К любому проекту предъявляется ряд абсолютных требований, например максимальное время разработки проекта, максимальные денежные вложения в проект и т.д. Одна из сложностей проектирования состоит в том, что оно не является такой структурированной задачей, как анализ требований к проекту или реализация того или иного проектного решения.

    Считается, что сложную систему невозможно описать в принципе. Это, в частности, касается систем управления предприятием. Одним из основных аргументов является изменение условий функционирования системы, например директивное изменение тех или иных потоков информации новым руководством. Еще один аргумент - объемы технического задания, которые для крупного проекта могут составлять сотни страниц, в то время как технический проект может содержать ошибки. Возникает вопрос: а может, лучше вообще не проводить обследования и не делать никакого технического проекта, а писать систему «с чистого листа» в надежде на то, что произойдет некое чудесное совпадение желания заказчика с тем, что написали программисты, а также на то, что все это будет стабильно работать?

    Если разобраться, то так ли уж непредсказуемо развитие системы и действительно ли получить информацию о ней невозможно? Вероятно, представление о системе в целом и о предполагаемых (руководством) путях ее развития можно получить посредством семинаров. После этого разбить сложную систему на более простые компоненты, упростить связи между компонентами, предусмотреть независимость компонентов и описать интерфейсы между ними (чтобы изменение одного компонента автоматически не влекло за собой существенного изменения другого компонента), а также возможности расширения системы и «заглушки» для нереализуемых в той или иной версии системы функций. Исходя из подобных элементарных соображений описание того, что предполагается реализовать в информационной системе, уже не кажется столь нереальным. Можно придерживаться классических подходов к разработке информационных систем, один из которых - схема «водопада» (рис. 1) - описан ниже. Кратко будут рассмотрены и некоторые другие подходы к разработке информационных систем, где использование элементов, описанных в схеме «водопада», также допустимо. Какого подхода из описываемых ниже придерживаться (и есть ли смысл придумывать собственный подход) - в какой-то мере дело вкуса и обстоятельств.

    Жизненный цикл программного обеспечения представляет собой модель его создания и использования. Модель отражает его различные состояния, начиная с момента возникновения необходимости в данном ПО и заканчивая моментом его полного выхода из употребления у всех пользователей. Известны следующие модели жизненного цикла:

    • Каскадная модель. Переход на следующий этап означает полное завершение работ на предыдущем этапе.
    • Поэтапная модель с промежуточным контролем. Разработка ПО ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют уменьшить трудоемкость процесса разработки по сравнению с каскадной моделью; время жизни каждого из этапов растягивается на весь период разработки.
    • Спиральная модель. Особое внимание уделяется начальным этапам разработки - выработке стратегии, анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов (макетирования). Каждый виток спирали предполагает создание некой версии продукта или какого-либо его компонента, при этом уточняются характеристики и цели проекта, определяется его качество и планируются работы следующего витка спирали.

    Ниже мы рассмотрим некоторые схемы разработки проекта.

    «Водопад» - схема разработки проекта

    Очень часто проектирование описывают как отдельный этап разработки проекта между анализом и разработкой. Однако в действительности четкого деления этапов разработки проекта нет - проектирование, как правило, не имеет явно выраженного начала и окончания и часто продолжается на этапах тестирования и реализации. Говоря об этапе тестирования, также следует отметить, что и этап анализа, и этап проектирования содержат элементы работы тестеров, например для получения экспериментального обоснования выбора того или иного решения, а также для оценки критериев качества получаемой системы. На этапе эксплуатации уместен разговор и о сопровождении системы.

    Ниже мы рассмотрим каждый из этапов, подробнее остановившись на этапе проектирования.

    Стратегия

    Определение стратегии предполагает обследование системы. Основная задача обследования - оценка реального объема проекта, его целей и задач, а также получение определений сущностей и функций на высоком уровне.

    На этом этапе привлекаются высококвалифицированные бизнес-аналитики, которые имеют постоянный доступ к руководству фирмы; этап предполагает тесное взаимодействие с основными пользователями системы и бизнес-экспертами. Основная задача взаимодействия - получить как можно более полную информацию о системе (полное и однозначное понимание требований заказчика) и передать данную информацию в формализованном виде системным аналитикам для последующего проведения этапа анализа. Как правило, информация о системе может быть получена в результате бесед или семинаров с руководством, экспертами и пользователями. Таким образом определяются суть данного бизнеса, перспективы его развития и требования к системе.

    По завершении основной стадии обследования системы технические специалисты формируют вероятные технические подходы и приблизительно рассчитывают затраты на аппаратное обеспечение, закупаемое программное обеспечение и разработку нового программного обеспечения (что, собственно, и предполагается проектом).

    Результатом этапа определения стратегии является документ, где четко сформулировано, что получит заказчик, если согласится финансировать проект; когда он получит готовый продукт (график выполнения работ); сколько это будет стоить (для крупных проектов должен быть составлен график финансирования на разных этапах работ). В документе должны быть отражены не только затраты, но и выгода, например время окупаемости проекта, ожидаемый экономический эффект (если его удается оценить).

    В документе обязательно должны быть описаны:

    • ограничения, риски, критические факторы, влияющие на успешность проекта, например время реакции системы на запрос является заданным ограничением, а не желательным фактором;
    • совокупность условий, при которых предполагается эксплуатировать будущую систему: архитектура системы, аппаратные и программные ресурсы, предоставляемые системе, внешние условия ее функционирования, состав людей и работ, которые обеспечивают бесперебойное функционирование системы;
    • сроки завершения отдельных этапов, форма сдачи работ, ресурсы, привлекаемые в процессе разработки проекта, меры по защите информации;
    • описание выполняемых системой функций;
    • будущие требования к системе в случае ее развития, например возможность работы пользователя с системой с помощью Интернета и т.п.;
    • сущности, необходимые для выполнения функций системы;
    • интерфейсы и распределение функций между человеком и системой;
    • требования к программным и информационным компонентам ПО, требования к СУБД (если проект предполагается реализовывать для нескольких СУБД, то требования к каждой из них, или общие требования к абстрактной СУБД и список рекомендуемых для данного проекта СУБД, которые удовлетворяют заданным условиям);
    • что не будет реализовано в рамках проекта.

    Выполненная на данном этапе работа позволяет ответить на вопрос, стоит ли продолжать данный проект и какие требования заказчика могут быть удовлетворены при тех или иных условиях. Может оказаться, что проект продолжать не имеет смысла, например из-за того, что те или иные требования не могут быть удовлетворены по каким-то объективным причинам. Если принимается решение о продолжении проекта, то для проведения следующего этапа анализа уже имеются представление об объеме проекта и смета затрат.

    Следует отметить, что и на этапе выбора стратегии, и на этапе анализа, и при проектировании независимо от метода, применяемого при разработке проекта, всегда следует классифицировать планируемые функции системы по степени важности. Один из возможных форматов представления такой классификации - MoSCoW - предложен в Clegg, Dai and Richard Barker, Case Method Fast-track: A RAD Approach, Adison-Wesley, 1994.

    Эта аббревиатура расшифровывается так: Must have - необходимые функции; Should have - желательные функции; Could have - возможные функции; Won’t have - отсутствующие функции.

    Реализация функций второй и третьей категорий ограничивается временными и финансовыми рамками: разрабатываем то, что необходимо, а также максимально возможное в порядке приоритета число функций второй и третьей категорий.

    Анализ

    Этап анализа предполагает подробное исследование бизнес-процессов (функций, определенных на этапе выбора стратегии) и информации, необходимой для их выполнения (сущностей, их атрибутов и связей (отношений)). На этом этапе создается информационная модель, а на следующем за ним этапе проектирования - модель данных.

    Вся информация о системе, собранная на этапе определения стратегии, формализуется и уточняется на этапе анализа. Особое внимание следует уделить полноте переданной информации, анализу информации на предмет отсутствия противоречий, а также поиску неиспользуемой вообще или дублирующейся информации. Как правило, заказчик не сразу формирует требования к системе в целом, а формулирует требования к отдельным ее компонентам. Уделите внимание согласованности этих компонентов.

    Аналитики собирают и фиксируют информацию в двух взаимосвязанных формах:

    • функции - информация о событиях и процессах, которые происходят в бизнесе;
    • сущности - информация о вещах, имеющих значение для организации и о которых что-то известно.

    Двумя классическими результатами анализа являются:

    • иерархия функций, которая разбивает процесс обработки на составные части (что делается и из чего это состоит);
    • модель «сущность-связь» (Entry Relationship model, ER-модель), которая описывает сущности, их атрибуты и связи (отношения) между ними.

    Эти результаты являются необходимыми, но не достаточными. К достаточным результатам следует отнести диаграммы потоков данных и диаграммы жизненных циклов сущностей. Довольно часто ошибки анализа возникают при попытке показать жизненный цикл сущности на диаграмме ER.

    Ниже мы рассмотрим три наиболее часто применяемые методологии структурного анализа:

    • диаграммы «сущность-связь» (Entity-Relationship Diagrams, ERD), которые служат для формализации информации о сущностях и их отношениях;
    • диаграммы потоков данных (Data Flow Diagrams, DFD), которые служат для формализации представления функций системы;
    • диаграммы переходов состояний (State Transition Diagrams, STD), которые отражают поведение системы, зависящее от времени; диаграммы жизненных циклов сущностей относятся именно к этому классу диаграмм.

    Нормализация

    Чтобы не допустить аномалий при обработке данных, используют нормализацию. Принципы нормализации для объектов информационной модели в точности такие же, как и для моделей данных.

    Допустимые типы связей. При ближайшем рассмотрении связи типа «один к одному» (рис. 7) почти всегда оказывается, что A и B представляют собой в действительности разные подмножества одного и того же предмета или разные точки зрения на него, просто имеющие отличные имена и по-разному описанные связи и атрибуты.

    Связи «многие к одному» представлены на рис. 8 .

    I - достаточно сильная конструкция, предполагающая, что вхождение сущности B не может быть создано без одновременного создания по меньшей мере одного связанного с ним вхождения сущности A.

    II - это наиболее часто встречающаяся форма связи. Она предполагает, что каждое и любое вхождение сущности A может существовать только в контексте одного (и только одного) вхождения сущности B. В свою очередь, вхождения B могут существовать как в связи с вхождениями A, так и без нее.

    III - применяется редко. Как A, так и B могут существовать без связи между ними.

    Связи «многие ко многим» представлены на рис. 9 .

    I - такая конструкция часто имеет место в начале этапа анализа и означает связь - либо понятую не до конца и требующую дополнительного разрешения, либо отражающую простое коллективное отношение - двунаправленный список.

    II - применяется редко. Такие связи всегда подлежат дальнейшей детализации.

    Рассмотрим теперь рекурсивные связи (рис. 10).

    I - редко, но имеет место. Отражает связи альтернативного типа.

    II - достаточно часто применяется для описания иерархий с любым числом уровней.

    III - имеет место на ранних этапах. Часто отражает структуру «перечня материалов» (взаимная вложенность компонентов). Пример: каждый КОМПОНЕНТ может состоять из одного и более (других) КОМПОНЕНТОВ и каждый КОМПОНЕНТ может использоваться в одном и более (других) КОМПОНЕНТОВ.

    Недопустимые типы связей. К недопустимым типам связей относятся следующие: обязательная связь «многие ко многим» (рис. 11) и ряд рекурсивных связей (рис. 12).

    Обязательная связь «многие ко многим» в принципе невозможна. Такая связь означала бы, что ни одно из вхождений A не может существовать без B, и наоборот. На деле каждая подобная конструкция всегда оказывается ошибочной.

    Диаграммы потоков данных

    Логическая DFD (рис. 13) показывает внешние по отношению к системе источники и стоки (адресаты) данных, идентифицирует логические функции (процессы) и группы элементов данных, связывающие одну функцию с другой (потоки), а также идентифицирует хранилища (накопители) данных, к которым осуществляется доступ. Структуры потоков данных и определения их компонентов хранятся и анализируются в словаре данных. Каждая логическая функция (процесс) может быть детализирована с помощью DFD нижнего уровня; когда дальнейшая детализация перестает быть полезной, переходят к выражению логики функции при помощи спецификации процесса (мини-спецификации). Содержимое каждого хранилища также сохраняют в словаре данных, модель данных хранилища раскрывается с помощью ER-диаграмм.

    В частности, в DFD не показываются процессы, которые управляют собственно потоком данных и не приводятся различия между допустимыми и недопустимыми путями. DFD содержат множество полезной информации, а кроме того:

    • позволяют представить систему с точки зрения данных;
    • иллюстрируют внешние механизмы подачи данных, которые потребуют наличия специальных интерфейсов;
    • позволяют представить как автоматизированные, так и ручные процессы системы;
    • выполняют ориентированное на данные секционирование всей системы.

    Потоки данных используются для моделирования передачи информации (или даже физических компонентов) из одной части системы в другую. Потоки на диаграммах изображаются именованными стрелками, стрелки указывают направление движения информации. Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться в ее источник. Такая ситуация может моделироваться либо двумя различными потоками, либо одним двунаправленным.

    Процесс преобразует входной поток данных в выходной в соответствии с действием, задаваемым именем процесса. Каждый процесс должен иметь уникальный номер для ссылок на него внутри диаграммы. Этот номер может использоваться совместно с номером диаграммы для получения уникального индекса процесса во всей модели.

    Хранилище данных (data storage) позволяет на ряде участков определять данные, которые будут сохраняться в памяти между процессами. Фактически хранилище представляет «срезы» потоков данных во времени. Информацию, которую оно содержит, можно использовать в любое время после ее определения, при этом данные могут выбираться в произвольном порядке. Имя хранилища должно идентифицировать его содержимое. В случае когда поток данных входит (выходит) в (из) хранилище и его структура соответствует структуре хранилища, он должен иметь то же самое имя, которое нет необходимости отражать на диаграмме.

    Внешняя сущность (терминатор) представляет сущность вне контекста системы, являющуюся источником или приемником системных данных. Ее имя должно содержать существительное, например «Клиент». Предполагается, что объекты, представленные такими узлами, не должны участвовать ни в какой обработке.

    Некоторые принципы проверки качества и полноты информационной модели
    (источник - Richard Barker, Case Method: Entity Relationship Modelling, Addison-Wesley, 1990)

    Если вы хотите создать качественную модель, то придется прибегать к помощи аналитиков, хорошо владеющих CASE-технологией. Однако это не означает, что построением и контролем информационной модели должны заниматься только аналитики. Помощь коллег также может оказаться весьма полезной. Привлекайте их к проверке поставленной цели и к детальному изучению построенной модели как с точки зрения логики, так и с точки зрения учета аспектов предметной области. Большинство людей легче находят недостатки в чужой работе.

    Регулярно представляйте вашу информационную модель или ее отдельные фрагменты, относительно которых у вас возникают сомнения, на одобрение пользователей. Особое внимание уделяйте исключениям из правил и ограничениям.

    Качество сущностей

    Основной гарантией качества сущности является ответ на вопрос, действительно ли объект является сущностью, то есть важным объектом или явлением, информация о котором должна храниться в базе данных.

    Список проверочных вопросов для сущности:

    • Отражает ли имя сущности суть данного объекта?
    • Нет ли пересечения с другими сущностями?
    • Имеются ли хотя бы два атрибута?
    • Всего атрибутов не более восьми?
    • Есть ли синонимы/омонимы данной сущности?
    • Сущность определена полностью?
    • Есть ли уникальный идентификатор?
    • Имеется ли хотя бы одна связь?
    • Существует ли хотя бы одна функция по созданию, поиску, корректировке, удалению, архивированию и использованию значения сущности?
    • Ведется ли история изменений?
    • Имеет ли место соответствие принципам нормализации данных?
    • Нет ли такой же сущности в другой прикладной системе, возможно, под другим именем?
    • Не имеет ли сущность слишком общий смысл?
    • Достаточен ли уровень обобщения, воплощенный в ней?

    Список проверочных вопросов для подтипа:

    • Отсутствуют ли пересечения с другими подтипами?
    • Имеет ли подтип какие-нибудь атрибуты и/или связи?
    • Имеют ли они все свои собственные уникальные идентификаторы или наследуют один на всех от супертипа?
    • Имеется ли исчерпывающий набор подтипов?
    • Не является ли подтип примером вхождения сущности?
    • Знаете ли вы какие-нибудь атрибуты, связи и условия, отличающие данный подтип от других?

    Качество атрибутов

    Следует выяснить, а действительно ли это атрибуты, то есть описывают ли они тем или иным образом данную сущность.

    Список проверочных вопросов для атрибута:

    • Является ли наименование атрибута существительным единственного числа, отражающим суть обозначаемого атрибутом свойства?
    • Не включает ли в себя наименование атрибута имя сущности (этого быть не должно)?
    • Имеет ли атрибут только одно значение в каждый момент времени?
    • Отсутствуют ли повторяющиеся значения (или группы)?
    • Описаны ли формат, длина, допустимые значения, алгоритм получения и т.п.?
    • Не может ли этот атрибут быть пропущенной сущностью, которая пригодилась бы для другой прикладной системы (уже существующей или предполагаемой)?
    • Нужно выяснить, отражают ли связи действительно важные отношения, наблюдаемые между сущностями.

      Список проверочных вопросов для связи:

      • Имеется ли ее описание для каждой участвующей стороны, точно ли оно отражает содержание связи и вписывается ли в принятый синтаксис?
      • Участвуют ли в ней только две стороны?

      Не является ли связь переносимой?

      • Заданы ли степень связи и обязательность для каждой стороны?
      • Допустима ли конструкция связи?

      Не относится ли конструкция связи к редко используемым?

      • Не является ли она избыточной?
      • Не изменяется ли она с течением времени?
      • Если связь обязательная, всегда ли она отражает отношение к сущности, представляющей противоположную сторону?

      Для исключающей связи:

      • Все ли концы связей, покрываемые исключающей дугой, имеют один и тот же тип обязательности?
      • Все ли из них относятся к одной и той же сущности?
      • рис. 15) такой декомпозиции. Рассмотрим простейшую задачу выписки счета клиенту при отпуске товара со склада при условии, что набор товаров, которые хочет приобрести клиент, уже известен (не будем рассматривать в данном примере задачу выбора товаров).

        Очевидно, что операция выбора и расчета скидок может быть также разбита на более мелкие операции, например на расчет скидок за приверженность (клиент покупает товары в течение долгого времени) и на расчет скидок за количество покупаемого товара. Атомарные функции описываются подробно, например с помощью DFD и STD. Очевидно, что такое описание функций не исключает и дополнительное словесное описание (например, комментарии).

        Следует отметить, что на этапе анализа следует уделить внимание функциям анализа и обработки возможных ошибок и отклонений от предполагаемого эталона работы системы. Следует выделить наиболее критичные для работы системы процессы и обеспечить для них особенно строгий анализ ошибок. Обработка ошибок СУБД (коды возврата), как правило, представляет собой обособленный набор функций или одну-единственную функцию.

        Уточнение стратегии

        На этапе анализа происходит уточнение выбранных для конечной реализации аппаратных и программных средств. Для этого могут привлекаться группы тестирования, технические специалисты. При проектировании информационной системы важно учесть и дальнейшее развитие системы, например рост объемов обрабатываемых данных, увеличение интенсивности потока запросов, изменение требований надежности информационной системы.

        На этапе анализа определяются наборы моделей задач для получения сравнительных характеристик тех или иных СУБД, которые рассматривались на этапе определения стратегии для реализации информационной системы. На этапе определения стратегии может быть осуществлен выбор одной СУБД. Данных о системе на этапе анализа уже намного больше, и они более подробны. Полученные данные, а также характеристики, переданные группами тестирования, могут показать, что выбор СУБД на этапе определения стратегии был неверным и что выбранная СУБД не может удовлетворять тем или иным требованиям информационной системы. Такие же данные могут быть получены относительно выбора аппаратной платформы и операционной системы. Получение подобных результатов инициирует изменение данных, полученных на этапе определения стратегии, например пересчитывается смета затрат на проект.

        Выбор средств разработки также уточняется на этапе анализа. В силу того что этап анализа дает более полное представление об информационной системе, чем оно было на этапе определения стратегии, план работ может быть скорректирован. Если выбранное на предыдущем этапе средство разработки не позволяет выполнить ту или иную часть работ в заданный срок, то принимается решение об изменении сроков (как правило, это увеличение срока разработки) или о смене средства разработки. Осуществляя выбор тех или иных средств, следует учитывать наличие высококвалифицированного персонала, который владеет выбранными средствами разработки, а также наличие администраторов выбранной СУБД. Эти рекомендации также будут уточнять данные этапа выбора стратегии (совокупность условий, при которых предполагается эксплуатировать будущую систему).

        Уточняются также ограничения, риски, критические факторы. Если какие-либо требования не могут быть удовлетворены в информационной системе, реализованной с использованием СУБД и программных средств, выбранных на этапе определения стратегии, то это также инициирует уточнение и изменение получаемых данных (в конечном итоге сметы затрат и планов работ, а возможно, и изменение требований заказчика к системе, например их ослабление). Более подробно описываются те возможности, которые не будут реализованы в системе.

        КомпьютерПресс 9"2001

    Начнем с рассмотрения общей архитектуры. Для начала, давайте выделим характерные особенности информационных систем подобного рода, функционирующих в сети Интернет на веб-сайтах, т.к. задача проектирования базируется на характеристиках той или иной системы и предъявляемых функциональных требованиях. Итак:

    • вся информация и все вычисления хранятся и выполняются на сервере
    • у каждого клиента свой броузер
    • многопользовательский доступ
    • разграничение доступа
    • ограничения по объему передаваемой информации
    • повышенные требования к безопасности
    • повышенные требования к производительности
    • переносимость

    Рассмотрим по порядку эти характеристики. На переднем плане первые два пункта. Они представляют собой наиболее важное отличие от информационных систем, функционирующих в закрытых сетях. Мы не имеем возможности хранить и обрабатывать какую-либо информацию на стороне клиента. Все должно выполнятся на сервере. При разработке информационной системы с клиентским программным обеспечением можно было бы хранить часть пользовательской информации и обрабатывать ее на стороне клиента. Такая возможность позволила бы нам разгрузить сервер и трафик сети. Например, в случае анализа посетителей веб-сайтов, мы хранили бы основные объемы информации у клиентов, а на сервере - лишь общедоступные статистические отчеты, выжимки и сравнительные показатели с другими клиентами. Но мы не имеем такой возможности, поэтому надо тратить большие деньги на накопители жестких дисков и вычислительные мощности серверов. Многопользовательский доступ и разграничение доступа являются общими требованиями для всех информационных систем. Важным критерием является ограничение по объему передаваемой информации. На сервере может быть канал с большой пропускной способность, но по этому каналу идет информация от множества клиентов. В свою очередь, у пользователя информация идет только для него, но очень часто пользователи сидят на плохих каналах, например, на модемном соединении, или же просто, в силу удаленности и большого количества шлюзов между клиентом и сервером, скорость передачи информации очень медленная. В связи с тем, что в сети Интернет находится огромное количество людей, среди которых есть и злоумышленники, то необходимо предъявлять повышенные требования к безопасности. Вы не можете написать инструкцию пользователю: делай так, а не иначе, а вот здесь у нас дырка, чтобы ее обойти, делайте так-то. Вы не знаете, чего ожидать от пользователя. В связи с тем, что на сервере происходят все вычисления, и что пользователь хочет работать в режиме реального времени и не намерен ждать и 30 секунд, выполнение отдельно взятой CGI-программы должно происходить максимально быстро. И наконец, переносимость. Конечно, эта особенность не столь важна, но допустим, вам потребовалось открыть зеркало сайта на другом континенте. Принципиально надо решить две проблемы. Во-первых, настройка серверной платформы и вашего программного обеспечения для функционирования вашей информационной системы. Во-вторых, перевод системы на другой язык. На другом континенте может просто не оказаться ни требуемой вашей информационной системой платформы, ни специалистов, которые бы могли все это установить, настроить и поддерживать. Например, будет другая разновидность Unix. Все эти характерные особенности, в основном, и определяют стадию проектирования.

    В процессе проектирования информационной системы можно выделить три основных этапа:

    1. проектирование пользовательского интерфейса;
    2. проектирование базы данных;
    3. проектирование связующей системы CGI-программ.

    На первом этапе проектирования необходимо выяснить требования пользователей к системе и, на основании этих требований, сделать макет сайта, показывающего все HTML-формы и HTML-файлы отчетов взаимодействия с информационной системой. Желательно, чтобы HTML-формы содержали некоторые данные по умолчанию и ссылались на HTML-документы, которые, предполагается, будут результатом выполнения запроса к системе. В этом случае, пользователям будет легче понять, что же вы спроектировали.
    Проектирование базы данных подробно обсуждалось в главе "Проектирование баз данных", поэтому здесь повторяться не будем. Отметим лишь, что данный этап скрыт от пользователей, и вся ответственность за выбор верного решения ложится на вас, как на разработчика.
    На третьем этапе выясняется набор CGI-программ. Что делает каждая CGI-программа, и взаимосвязи между ними. Сразу хочется отметить одну очень распространенную ошибку начинающих веб-разработчиков, которые в одной программе реализуют несколько функций. Например, при разработке гостевой книги делается один CGI-скрипт, который вызывается во всех HTML-формах: и при показе сообщений, и при добавлении, еще хуже, если туда же включают функции администраторского доступа, т.е. удаление и редактирование сообщений. Есть три существенных причины, по которым не стоит так делать. Во-первых, это потенциальная дыра в безопасности. Во-вторых, загрузка и выполнение такой CGI-программы будет происходить медленнее. И в-третьих, такую программу сложно модифицировать, тестировать и отлаживать, т.к. она сама по себе представляет сложность из-за объема исходного текста.
    Наиболее правильным решением является однозначная связь между функциональным требованием и CGI-программой. Одна функция (операция) - одна CGI-программа. В этом случае, исходный код будет простым и небольшим, а следовательно, значительно снижается вероятность пропустить в нем дыру в безопасности. Загрузка и выполнение такой программы будет происходить значительно быстрее. И самое главное, модифицировать и поддерживать такую программу будет значительно легче.
    Помимо того, чтобы расписать, какая программа какую функцию выполняет, вам необходимо установить взаимосвязи между ними. Это такая паутинная схема. В простых системах она простая, в больших ее сложность возрастает нелинейно. Конечно, можно расставлять связи по месту. В простых системах вообще ничего не рисуют, т.к. и так все очевидно. Но вот в больших системах, особенно, если вы работаете в команде из нескольких человек, полезно иметь визуальное представление, откуда и какой CGI-скрипт вызывается, и куда вы попадете после его выполнения. Принципиально, как мы уже рассматривали в главе "CGI-программирвание", CGI-программа может выдавать либо текст, либо перенаправлять на другой адрес в Интернет, либо же выдавать картинку или еще какой файл. Вот такого рода схемку, набросанную от руки, полезно иметь, чтобы ясно представлять себе архитектуру проекта.

    В настоящее время информационная индустрия стала новой отраслью технологий, приносит пользователям большую выгоду. Поэтому в современных условиях руководитель организации должен владеть знаниями методических основ создания ИС. Знание методических основ создания и использования ИC тесно связано с развитием и совершенствованием управленческих процессов.

    Основоположником кибернетики (науки о системах и методы управления) является Норберт Винер (США). Труды его последователей стали фундаментом теории автоматического управления. Это наука об общих законах получения, хранения, передачи и преобразования информации в сложных системах управления. Применение компьютерной техники для решения задач управления привело к развитию теории информации, теории кодирования, сформировался самостоятельное научное направление информатика. Результаты этих исследований легли в основу разработки методологии применения технических и программных средств для решения задач различной практической направленности.

    Экономические объекты стали рассматриваться как сложные системы, а управление ими отождествляться с информационным процессом. Интенсивное развитие возможностей компьютерной техники и сферы ее применения привел к созданию в экономических объектах человеко-машинных ИС. Назначением ИС стал не только информационное сопровождение производственных и хозяйственных процессов, решения функциональных задач управления внутри организации, но и информационное взаимодействие между различными связанными между собой организациями в производственной, хозяйственной и информационном аспектах.

    Основоположником единых методических подходов в проектировании ИС был академик В.М. Глушков, который сформулировал научно-методические положения и практические рекомендации по созданию автоматизированной информационной системы. Основными принципами единых методических подходов является :

    1. Принцип системности, который является важнейшим при создании, функционировании и развитии ИС. Он рассматривает исследуемый экономический объект, как единое целое. При этом, устанавливает направления производственно-хозяйственной деятельности организации и конкретные функции, реализуемые ею; обнаруживает различные типы связей между его структурными элементами обеспечивая целостность системы. Принцип системности предполагает проведение в организации двух аспектного анализа, а именно макро- и микроанализа. При макроанализе система и (или) ее "элементы рассматриваются как часть системы более высокого порядка. Особое внимание уделяется информационным связям: устанавливаются их направления движения, выделяются и анализируются те связи, которые обусловлены целью функционирования и исследования объекта, а затем выбираются наиболее предпочтительны, учитываемых в процессе проектирования ИС. При макроанализе изучаются все аспекты деятельности организации, анализируются ее структурные составляющие (включая деятельность на каждом рабочем месте) с целью их функциональных характеристик, проявляющихся через связи с другими элементами и внешней средой.

    При проектировании ИС для организационной структуры управления экономическим объектом наиболее характерна многоуровневая иерархическая структура. Иерархическая структура для каждого уровня системы дает возможность различных сочетаний локальных критериев оптимальности с глобальным критерием оптимальности функционирования системы в целом; обеспечивает относительную гибкость системы управления и возможность приспосабливаться к изменяющимся условиям; повышает надежность за счет возможности введения элементной избыточности, упорядочения направлений потоков информации. Преимущества иерархических структур способствовали их широкому распространению в системах управления и определяли организационно - функциональный подход к созданию ИС. Накопленный при этом опыт оказал влияние на современный процессный подход при проектировании ИС.

    Практическое значение применения системного принципа заключается в том, что он позволяет в доступной для анализа форме не только выявить интересует создателей системы, но и использовать компьютерное моделирование для исследования поведения проектируемой системы в конкретных, заданных экспериментатором условиях. Поэтому в основе создания ИС лежит метод моделирования, позволяет находить наиболее приемлемые и обоснованные проектные решения, варианты построения системы и тем самым обеспечивать наибольшую эффективность функционирования экономического объекта.

    2. Принцип развития, который заключается в том, что ИС создается с учетом возможности постоянного пополнения и обновления функций системы и видов ее обеспечения. Его суть в том, что развивающиеся производственные и управленческие процессы, усложняются и перестраиваются организационные структуры экономических объектов - это вызывает необходимость наращивания вычислительных мощностей ИС, оснащение их новыми техническими и программными средствами для постоянного пополнения и обновления решаемых задач, расширение информационного фонда, создается в виде баз и хранилищ данных, баз знаний.

    3. Принцип информационный, который направлен на детальное и всестороннее изучение информации и информационных процессов, сопровождающих процессы управления в экономическом объекте. Информация изучается в семантическом (содержательном), синтаксическом (знаковом) и прагматическом (полезном) аспектах. Кроме этого, изучение информации необходимо для проектирования автоматизированных рабочих мест, систем передачи, хранения и обработки данных, защиты информации, где основными являются знания объемов, содержания и полезности сведений.

    В настоящее время на информационном подходе основывается объектно ориентированный метод моделирования информационных процессов и автоматизации проектных работ для анализа управленческих процессов и проектирования информационных электронных потоков.

    4. Принцип совместимости, который заключается в обеспечении взаимодействия ИС различных видов, назначений, уровней в процессе функционирования экономического объекта. Поэтому в процессе проектирования должна быть обеспечена системная единство методических подходов в решении проблем информационной, технической, программной совместимости всех ИС, используемых. Единство методических подходов отражается в нормативно-правовых документах, регламентирующих процесс разработки, документирования, приема и эксплуатации ИС. Это международные и отечественные стандарты (ГОСТ), отраслевые и ведомственные нормативные материалы, регламенты, протоколы, стандарты организаций.

    Широко используются стандарты, регламентирующие языковые средства информационной обработки, коммуникационные технологии и организации вычислений, между объектная взаимодействие и тому подобное.

    5. Принцип стандартизации и унификации, который заключается в необходимости применения типовых, унифицированных и стандартизованных элементов функционирования ИС. Это прежде всего относится к составляющим информационного, технического, программного и других обеспечительных подсистем IT. Этот принцип позволяет сократить временные, трудовые и стоимостные затраты на создание ИС при максимально возможном использовании накопленного опыта в формировании проектных решений и внедрении автоматизации проектировочных работ, обеспечивает многоаспектную взаимодействие ИС.

    6. Принцип декомпозиции, который основан на разделении системы на части и выделении отдельных комплексов работ, создает условия для более эффективного анализа существующего состояния управленческой деятельности, изучение особенностей решения функциональных задач для дальнейшего моделирования конкретных аспектов управленческой деятельности и перевода их на автоматизированную технологию. Принцип используется как при изучении особенностей свойств элементов и системы в целом, так и при создании ИС на новой информационно-технологической базе.

    7. Принцип эффективности, который заключается в достижении рационального соотношения между затратами на создание ИС и целевым эффектом, получаемый при ее функционировании.

    Описание жизненного цикла информационной системы предполагает оперирование такими понятиями:

    Процесс - цепочка работ, последовательно выполняются;

    Этапы - последовательные отрезки времени, в течение которого выполняются работы. В течение этапа могут выполняться работы, относящиеся к разным процессам. В основе деятельности по созданию и использования автоматизированной информационной системы управления экономическим объектом лежит понятие ее жизненного цикла (ЖЦ). Жизненный цикле моделью создания и использования, автоматизированной информационной системы управления экономическим объектом, отражающим различные ее состояния, начиная с момента возникновения и необходимости в ней и заканчивая моментом полного выхода из использования всех без исключения пользователей .

    Традиционно выделяют следующие основные этапы ЖЦ АИС :

    Анализ требований;

    Проектирование;

    Программирование / внедрения;

    Тестирование и отладка;

    Эксплуатация и сопровождение.

    Рассмотрим подробнее основные этапы ЖЦ АИС:

    1. Анализ требований является первой фазой разработки АИС, на которой требования заказчика уточняются, формализуются и документируются. Фактически на этом этапе дается ответ на вопрос: "Что должна делать будущая система?", А это успехом всего проекта. В практике создания больших систем известно немало примеров неудачной реализации проекта именно из-за неполноты и нечеткости определения системных требований.

    Перечень требований к АИС должен включать:

    1) совокупность условий, при которых предполагается эксплуатировать будущую систему (аппаратные и программные ресурсы, предоставляемые системе; внешние условия ее функционирования, состав работников и работ, имеющих к ней отношение)

    2) описание функций, которые должен выполнять система;

    3) ограничения в процессе разработки (директивные сроки завершения отдельных этапов, имеющиеся ресурсы, организационные процедуры и мероприятия, обеспечивающие защиту информации).

    Целью анализа является преобразование общих, нечетких знаний о требованиях к будущей системе в точные (по возможности) определения.

    Результатом этапа должна быть модель требований к системе (то есть - системный проект), что значит:

    1) архитектуру системы, ее функции, внешние условия, разделение функций между аппаратной и программной частями;

    2) интерфейсы и разделение функций между человеком и системой;

    3) требования к программным и информационных компонентов программной части: необходимые аппаратные ресурсы, требования к базе данных, физические характеристики компонент программной части, их интерфейсы.

    Модель требований должна включать;

    1) полное функциональную модель требований к будущей системе с глубиной обработки до уровня каждой операции каждого должностного лица;

    2) спецификации операций нижнего уровня;

    3) пакет отчетов и документов по функциональной модели, включающей характеристику объекта моделирования, перечень подсистем, требования к способам и средствам связи для информационного обмена между компонентами, требования к характеристикам взаимосвязей системы со смежными системами, требования к функциям системы;

    4) концептуальную информационную модель требований;

    5) пакет отчетов и документов по информационной модели;

    6) архитектуру системы с привязкой к концептуальной информационной модели;

    7) предложения по организации структуры для поддержки системы.

    Таким образом, модель требований содержит функциональную, информационную и, возможно, событийный (в случае, если целевая система является системой реального времени) модели. Это обеспечивает ряд преимуществ по сравнению с традиционной моделью, а именно:

    1) Для традиционной разработки характерно осуществление начальных этапов кустарными неформализованными способами. Поэтому заказчики и пользователи впервые могут увидеть систему после того, как она уже в значительной мере реализована. Естественно, эта система будет отличаться от той, которой они ожидали. Поэтому дальше иметь место еще несколько итераций ее разработки или модификации, требует дополнительных (и значительных) затрат денег и времени. Ключ к решению этой проблемы и дает модель требований, позволяет

    Описать, "увидеть" и скорректировать будущую систему до того, как она будет реализована физически;

    Уменьшить затраты на разработку и внедрение системы;

    Оценить разработку по времени и результатам;

    Достичь взаимопонимания между всеми участниками работы (заказчиками, пользователями, разработчиками, программистами)

    Улучшить качество разрабатываемой, а именно: выполнить ее функциональную декомпозицию и спроектировать оптимальную структуру интегрированной базы данных.

    2) Модель требований полностью независимая и отделена от конкретных разработчиков, не требует сопровождения ее создателями и может быть безболезненно передана другим лицам. Более того, если по каким-либо причинам предприятие не готово к реализации системы на основе модели требований, она может быть оставлена "на полке" до тех пор, пока в ней не возникнет необходимость.

    3) Модель требований может быть использована для самостоятельной разработки или корректировки уже реализованных на ее основе программных средств силами программистов отдела автоматизации предприятия.

    4) Модель требований может использоваться для автоматизированного и быстрого обучения новых работников конкретному направлению деятельности предприятия, поскольку ее технология содержится в модели.

    Этап анализа требований является важнейшим среди всех этапов ЖЦ. Он существенно влияет на все последующие этапы, оставаясь в то же время наименее изученным и понятным процессом. На этом этапе, во-первых, нужно понять, что именно нужно сделать, а во-вторых, задокументировать это, потому что если требования не зафиксированы и не сделаны доступными для участников проекта, то они вроде бы и не существуют. При этом язык, на котором формулируются требования, должна быть достаточно простой и понятной заказчику.

    2. Разработка технического задания выполняется после построения модели, содержит требования к будущей системе. На ее основе разрабатывается техническое задание по созданию системы, включающей в себя:

    Требования к автоматизированным рабочим местам, их состава и структуры, а также к способам и схем информационного взаимодействия между ними;

    Разработку требований к техническим средствам;

    Определение требований к программным средствам;

    Разработку топологии, состава и структуры локальной вычислительной сети;

    Требования к этапам и срокам выполнения работ.

    3. Проектирование. Этот этап дает ответ на вопрос: "Как (каким образом) система будет удовлетворять требованиям, предъявляемым к ней? Задачей этого этапа

    Есть исследования структуры системы 1 логических взаимосвязей элементов, причем здесь не затрагиваются вопросы, связанные с реализацией на конкретной платформе. Проектирование рассматривается как итерационный процесс получения логической модели системы вместе со строго сформулированными целями, поставленными перед ней, а также написание спецификаций физической системы, удовлетворяет этим требованиям. Этот этап обычно разделяют на два подэтапа:

    Проектирование архитектуры системы, включая разработку структуры и интерфейсов компонентов, согласование функций и технических требований к компонентам, методов и стандартов проектирования;

    Детальное проектирование, которое предусматривает разработку спецификаций каждого компонента, интерфейсов между компонентами, разработку требований к тестам и плана интеграции компонентов.

    Иными словами, проектирование является этапом ЖЦ, на котором определяется, как следует реализовывать требования к ЛЕС, порожденные и зафиксированы на этапе анализа. В результате должна быть построена модель реализации, которая демонстрирует, как система будет удовлетворять предъявленные к ней требования (без технических подробностей). Фактически модель реализации является развитием и уточнением модели требований, а именно проектирования является мостом между анализом и реализацией.

    4. Реализация (программирование / адаптация). На этом этапе осуществляется создание ЛЕС, как комплекса программно-аппаратных средств (начиная с проектирования и создания телекоммуникационной инфраструктуры и заканчивая разработкой и установкой приложений).

    5. Тестирование и отладка. Корректность АИС является ее важнейшим свойством и главным предметом заботы разработчиков. В идеальном случае под корректностью 1C подразумевают отсутствие в ней ошибок. Однако для большинства сложных программных продуктов достичь этого невозможно (в каждой программе содержится хотя бы одна ошибка). Поэтому под "корректным" обычно понимают программный продукт, работающий в соответствии с предъявленных к нему требований, то есть - продукт, для которого пока еще не найдены такие условия, в которых он окажется неработоспособным.

    Установление корректности является главной целью этапа жизненного цикла, рассматривается. Надо отметить, что этап тестирования и отладки - один из самых трудоемких, утомительных и непредсказуемых этапов разработки ИС. В среднем за разработки традиционными методами этот этап занимает от 1/2 до 1/3 всего времени разработки. С другой стороны, тестирования и отладки представляют собой серьезную проблему: в некоторых случаях тестирования и отладки программы требуют в несколько раз больше времени, чем непосредственно программирования.

    Тестирование - это набор процедур и действий, предназначенных для демонстрации корректной работы ИС в заданных режимах и внешних условиях. Цель тестирования - выявить наличие ошибок или убедительно продемонстрировать их отсутствие, что возможно лишь в отдельных тривиальных случаях. Важно различать тестирования и сопутствующее понятие "отладка". Отладка - это набор процедур и действий, которые начинаются с выявления самого факта наличия ошибки и заканчиваются установлением точного места, характера этой ошибки и способов ее устранения.

    Важнейшим и наиболее часто применяемым на практике является метод детерминированного тестирования. При этом в качестве эталонов тестов используются конкретные исходные данные, состоящие из взаимосвязанных входных и результирующих величин и правильных последовательностей их обработки. В процессе тестирования с заданными начальными величинами надо установить соответствие результатов их обработки эталонным значениям.

    Для сложных систем требуется большое количество тестов, и возникает проблема оценки их необходимого количества и использования методов их сокращения. Поэтому тестирование (как и любой другой вид деятельности) целесообразно планировать. План тестирования должен содержать:

    1) формулировка целей тестирования;

    2) критерии качества тестирования, позволяющие оценить его результаты;

    3) стратегию проведения тестирования, обеспечивающий достижение заданных критериев качества;

    4) потребности в ресурсах для достижения заданного критерия качества по выбранной стратегии.

    Существуют системы автоматизация тестирования и отладки (Сатна). Они представляют собой сложный комплекс алгоритмических и программных средств, предназначенных для автоматизации анализа АИС, тестирования, отладки и оценок ее качества, и позволяет облегчить модификацию компонент АИС, обеспечить выявление ошибок на ранних стадиях отладки, повысить процент ошибок, автоматически оказываются.

    6. Эксплуатация и сопровождение. Основными задачами этого этапа являются:

    Обеспечение устойчивости работы системы и сохранения информации - администрирование;

    Своевременная модернизация и ремонт отдельных элементов - техническая поддержка;

    Адаптация возможностей системы, эксплуатируемого с текущими потребностями бизнеса предприятия - развитие системы.

    Эти работы необходимо включать в оперативный план информатизации предприятия, который должен формироваться обязательно с соблюдением всех условий стратегического плана. В противном случае в рамках существующей системы могут появиться фрагменты, которые в будущем сделают эффективную эксплуатацию системы невозможной. Сейчас за рубежом стало общепринятым передавать функции технической поддержки и частично администрирования поставщикам системы или системным интеграторам. Эта практика получила название "аутсорсинг". Часто в пределах аутсорсинга сторонним предприятиям передаются и такие функции, как создание и поддержка резервных хранилищ данных и центров выполнения критических бизнес-приложений, которые задействуются в случае стихийного бедствия или других особых условий.

    Особое внимание на этапе эксплуатации и сопровождения нужно уделить вопросам обучения персонала и, соответственно, планированию инвестиций в этот процесс.

    ЖЦ образуется в соответствии с принципом нисходящего проектирования и обычно имеет итерационный характер: реализованные этапы, начиная с самых первых, циклически повторяются в соответствии с изменениями требований и внешних условий, введение ограничений и т. На каждом этапе ЖЦ порождается определенный набор документов и технических решений, при этом для каждого этапа исходными являются документы и решения, полученные на предыдущем этапе. Каждый этап завершается верификацией порожденных документов и решений с целью проверки соответствия их выходным.

    Существующие модели ЖЦ определяют порядок выполнения этапов в ходе разработки, а также критерии перехода от этапа к этапу. В соответствии с этим наибольшее распространение получили следующие три модели ЖЩ4]:

    1. Каскадная модель (70 - 80-е годы) предусматривает переход к следующему этапу после полного завершения работ на предыдущем этапе и характеризуется четким разделением данных и процессов их обработки (рис. 2.6).

    Рис. 2.6. Каскадная модель жизненного цикла ИС

    2. Поэтапная модель с промежуточным контролем (80 - 85-е годы) - итерационная модель разработки с циклами обратной связи между этапами. Преимущество такой модели в том, что между этапные корректировки обеспечивают меньшую трудоемкость по сравнению с каскадной моделью; с другой стороны, время жизни каждого из этапов растягивается на весь период разработки.

    3. Спиральная модель (86 - 90-е годы) - заостряет внимание на начальных этапах ЖЦ: анализе требований, проектировании спецификаций, предыдущем и детальном проектировании. На этих этапах проверяется и обосновывается реализуемость технических решений созданием прототипов. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации (рис. 2.7.).

    Рис. 2.7. Спиральная модель жизненного цикла ИС

    Специалисты отмечают такие преимущества спиральной модели:

    Накопление и повторное использование программных средств, моделей и прототипов;

    Ориентация на развитие и модификацию системы в ходе ее проектирования;

    Анализ риска и издержек в процессе проектирования.

    При использовании спиральной модели происходит накопление и повторное использование проектных решений, средств проектирования, моделей и прототипов информационной системы и информационной технологии; осуществляется ориентация на развитие и модификацию системы и технологи в процессе их проектирования; проводится анализ риска и издержек в процессе проектирования систем и технологий.

    Особенности проектирования информационной технологии. Современная информационная технология реализуется в условиях спроектированной информационной системы.

    Аспекты проектирования: техническое (аппаратно-коммуникационный комплекс), программно-математический (модели и программы), методический (совокупность средств реализации функций управления), организационный (описание документооборота и регламента действий аппарата управления), пооперационный (совокупность технологических, логических, арифметических действий, реализуемых в автоматическом режиме).