Первый модем. Что такое модем и с чем едят

30.10.2019 Ios

Общие сведения о безопасности в компьютерных сетях

Основной особенностью любой сетевой системы является то, что ее компоненты распределены в пространстве, и связь между ними физически осуществляется при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно) и программно при помощи механизма сообщений. При этом все управляющие сообщения и данные, пересылаемые между объектами распределенной вычислительной системы, передаются по сетевым соединениям в виде пакетов обмена.

Сетевые системы характерны тем, что наряду с локальными угрозами, осуществляемыми в пределах одной компьютерной системы, к ним применим специфический вид угроз, обусловленный распределенностью ресурсов и информации в пространстве. Это так называемые сетевые, или удаленные угрозы. Они характерны, во-первых, тем, что злоумышленник может находиться за тысячи километров от атакуемого объекта, и, во-вторых, тем, что нападению может подвергаться не конкретный компьютер, а информация, передающаяся по сетевым соединениям. С развитием локальных и глобальных сетей именно удаленные атаки становятся лидирующими как по числу попыток, так и по успешности их применения и, соответственно, обеспечение безопасности вычислительных сетей с позиции противостояния удаленным атакам приобретает первостепенное значение. Специфика распределенных вычислительных систем состоит в том, что если в локальных вычислительных сетях наиболее частыми являются угрозы раскрытия и целостности, то в сетевых системах на первое место выходит угроза отказа в обслуживании.

Удаленная угроза - потенциально возможное информационное разрушающее воздействие на распределенную вычислительную сеть, осуществляемая программно по каналам связи. Это определение охватывает обе особенности сетевых систем - распределенность компьютеров и распределенность информации. Поэтому при рассмотрении вопросов И Б вычислительных сетей рассматриваются два подвида удаленных угроз - это удаленные угрозы на инфраструктуру и протоколы сети и удаленные угрозы на телекоммуникационные службы. Первые используют уязвимости в сетевых протоколах и инфраструктуре сети, а вторые - уязвимости в телекоммуникационных службах.

Цели сетевой безопасности могут меняться в зависимости от ситуации, но обычно связаны с обеспечением следующих составляющих ИБ:

  • целостность данных;
  • конфиденциальность данных;
  • доступность данных.

Целостность данных - одна из основных целей И Б сетей - предполагает, что данные не были изменены, подменены или уничтожены в процессе их передачи по линиям связи, между узлами вычислительной сети. Целостность данных должна гарантировать их сохранность как в случае злонамеренных действий, так и случайностей. Обеспечение целостности данных является обычно одной из самых сложных задач сетевой безопасности.

Конфиденциальность данных - вторая главная цель сетевой безопасности. При информационном обмене в вычислительных сетях большое количество информации относится к конфиденциальной, например, личная информация пользователей, учетные записи (имена и пароли), данные о кредитных картах и др.

Доступность данных - третья цель безопасности данных в вычислительных сетях. Функциями вычислительных сетей являются совместный доступ к аппаратным и программным средствам сети и совместный доступ к данным. Нарушение И Б как раз и связано с невозможностью реализации этих функций.

В локальной сети должны быть доступны принтеры, серверы, рабочие станции, данные пользователей и др.

В глобальных вычислительных сетях должны быть доступны информационные ресурсы и различные сервисы, например почтовый сервер, сервер доменных имен, veb-cepBep и др.

При рассмотрении вопросов, связанных с ИБ, в современных вычислительных сетях необходимо учитывать следующие факторы:

  • глобальная связанность;
  • разнородность корпоративных информационных систем;
  • распространение технологии «клиент/сервер».

Применительно к системам связи глобальная связанность означает,

что речь идет о защите сетей, пользующихся внешними сервисами, основанными на протоколах TCP/IP и предоставляющих аналогичные сервисы вовне. Весьма вероятно, что внешние сервисы находятся в других странах, поэтому от средств защиты в данном случае требуется следование стандартам, признанным на международном уровне. Национальные границы, законы, стандарты не должны препятствовать защите потоков данных между клиентами и серверами.

Из факта глобальной связанности вытекает также меньшая эффективность мер физической защиты, общее усложнение проблем, связанных с защитой от несанкционированного доступа, необходимость привлечения для их решения новых программно-технических средств, например, межсетевых экранов.

Разнородность аппаратных и программных платформ требует от изготовителей средств защиты соблюдения определенной технологической дисциплины. Важны не только чисто защитные характеристики, но и возможность встраивания этих систем в современные корпоративные информационные структуры. Если, например, продукт, предназначенный для криптографической защиты, способен функционировать исключительно на платформе Wintel (Windows+Intel), то его практическая применимость вызывает серьезные сомнения.

Корпоративные ИС оказываются разнородными еще в одном важном отношении - в разных частях этих систем хранятся и обрабатываются данные разной степени важности и секретности.

Использования технологии «клиент/сервер» с позиции И Б имеет следующие особенности:

  • каждый сервис имеет свою трактовку главных аспектов И Б (доступности, целостности, конфиденциальности);
  • каждый сервис имеет свою трактовку понятий субъекта и объекта;
  • каждый сервис имеет специфические угрозы;
  • каждый сервис нужно по-своему администрировать;
  • средства безопасности в каждый сервис нужно встраивать по-особому.

Особенности вычислительных сетей, и в первую очередь глобальных, предопределяют необходимость использования специфических методов и средств защиты, например:

  • - защита подключений к внешним сетям;
  • - защита корпоративных потоков данных, передаваемых по открытым сетям;
  • - защита потоков данных между клиентами и серверами;
  • - обеспечение безопасности распределенной программной среды;
  • - защита важнейших сервисов (в первую очередь - web-сервиса);
  • - аутентификация в открытых сетях.

Вопросы реализации таких методов защиты будут рассмотрены далее.

В последнее время все четче просматривается незащищенность вычислительных сетей от глобальных атак. Успешные глобальные сетевые атаки, безусловно, являются самым разрушительным явлением, которое может произойти в современных сетях.

Трудно себе представить персональный компьютер без возможности доступа в интернет. Интернет является средой, где аккумулируется большой обьем информации, полноценный доступ к которой доступен только при использовании модема. Модем это устройство, которое является мостом между компьютером и этой информацией. Модем - это устройство для передачи данных по обычным телефонным линиям, служащее для связи двух компьютеров. Само слово "модем" является сокращением oт "модулятор-демодулятор". Все телефонные линии, как правило, работают с аналоговые сигналом, а компьютер, - с цифровым. Поэтому основной функцией модема можно считать преобразование цифрового сигнала компьютера в аналоговый телефонной линии и наоборот.

Подключение модема

Модемы к компьютеру могут подключаться через последовательный интерфейс RS-232, параллельный интерфейс и USB интерфейс. Подключение к телефонной линии производится посредством кабеля RJ11. На практике подключение чаще осуществляется через последовательный интерфейс порт COM2 т. к. СОМ1 чаще всего бывает, занят другими устройствами, например "мышкой".

Конфигурация портов:

СОМ 1 привязан к IRQ 4 (3F8-3FF).

СОМ 2 привязан к IRQ 3 (2F8-2FF).

СОМ 3 привязан к IRQ 4 (3E8-3FF).

СОМ 4 привязан к IRQ 3 (2E8-2EF).

Подключив модем к СОМ-поргу и назначив IRQ, обязательно нужно проверить другие устройства на предмет наличия у них тех же последовательных портов и прерываний.

Настройка модема на тот или иной порт и прерывание (IRQ), обычно осуществляется с помощью джамперов, переключателей или программным путем. Общие сведения

Цифровые данные, поступающие в модем из компьютера, преобразуются в нем путем модуляции (по амплитуде, частоте, фазе) в соответствии с избранным стандартом протоколом и направляются в телефонную линию. Модем-приемник провайдера, понимающий данный протокол, осуществляет обратное преобразование (демодуляцию) и пересылает восстановленные цифровые данные в свой компьютер. Таким образом, для обеспечения устойчивой связи необходимо, чтобы ваш модем поддерживал общий протокол, был подключен непосредственно к компьютеру, а линия связи по своим параметрам могла пропускать модулированные сигналы.

Физически в модемах все это реализовано достаточно просто сигнал представляет собой несущую (синусоиду опр. частоты), дискретно промоделированную по фазе и амплитуде, т. е. друг за другом идут фрагменты этой синусоиды с разными амплитудами (возможно несколько фиксированных значений) и сдвигом фазы относительно предыдущего фрагмента (рис. 1).

Стандарты модуляции

Для передачи данных с помощью модемов используется модуляция. Чтобы передающее и принимающее устройства "понимали" друг друга, они должны использовать один и тот же метод модуляции. Как правило, при различных скоростях передачи данных используются разные методы модуляции, но иногда передача данных с одной и той, же скоростью тоже может осуществляться с помощью различных методов модуляции.

При передаче данных отправляющий модем преобразует цифровые данные в аналоговый сигнал, который передается по телефонной линии. Принимающий модем выполняет обратное преобразование - из аналоговой формы в цифровую

Виды модуляции

Частотная модуляция. Когда нули передаются сигналом одной частоты, а единицы - другой, мы имеем дело с частотной модуляцией (ЧМ). Частотная модуляция реализуется наиболее просто и работает весьма надежно, однако имеет естественный предел, связанный с тем, что полоса пропускания телефонного канала очень мала. Теоретически она составляет всего 4 кГц, но из-за того, что в начале и конце полосы пропускания велики нелинейные искажения, реально доступен диапазон от 300 Гц до 3400 Гц. А это означает, что даже если весь период сигнала отдать одному биту, то скорость передачи не может превысить половины полосы пропускания. Поэтому если бы в моде мах использовалась только частотная модуляция, то они и по сей день работали бы со скоростью 1200-1500 бит в секунду. Зато на малых скоростях частотная модуляция работает весьма надежно. Этот вид модуляции был закреплен стандартом V.21 и применялся в ранних модемах, хотя не забыт и сегодня. Именно в таком режиме современные модемы начинают свою работу. Выходя на связь, модем еще "не знает", какими свойствами обладает его партнер, и двум модемам нужен какой-то переговорный процесс для согласования параметров дальнейшей работы. Поэтому в первый момент модемы обмениваются посылками нанизкой скорости, модулированными по частоте.

Амплитудная модуляция. Если нули передаются сигналами одной громкости, а единицы - другой, то это амплитудная модуляция (AM). Технически создать амплитудную модуляцию еще проще, чем частотную, но надежность передачи при этом мала, поэтому амплитудную модуляцию используют весьма ограниченно. В современных модемах ее сочетают с фазовой модуляцией для того, чтобы передать больше информации (более одного бита данных) в одном периоде сигнала.

Фазовая и фазоразностная модуляция Метод фазовой модуляции (ФМ) основан на том, что если два гармонических (синусоидальных) сигнала имеют сдвиг по фазе, то его можно обнаружить, замерить и использовать для передачи данных (рис. 2).

Рис. 2. Сдвиг по фазе двух сигналов на 90°

Хотя в телефонных сетях есть устройства, способные исказить фазу сигнала, тем не менее, этот метод модуляции позволяет более уверенно выделять полезные данные на фоне шума, чем амплитудная и частотная модуляция. Разумеется, этот вывод относится только к тому диапазон у звуковых частот, который характерен для телефонных сетей.

С помощью фазовой модуляции можно закодировать в одном периоде сигнала несколько бит информации. Например, сдвигу в 0° можно присвоить двухбитное значение 00, сдвигу в 90° - значение 01, сдвигу в 180° - значение 10, а сдвигу в 270° - значение 11.

Обратите внимание на то, что сдвиг по фазе для одного сигнала не имеет смысла - обязательно нужна пара сигналов, чтобы было, что сравнивать. В модемах замеряется сдвиг по фазе очередного сигнала относительно предыдущего. Таким образом, играет роль не то, какая у данного сигнала фаза, а какой переход произошел в фазе при приеме очередного сигнала. Если предыдущий сигнал имел фазу 0°, а последующий - фазу 90°, то это то же самое, что переход от 180° к 270° и, соответственно, то же, что переход от 270° к 0°. Поэтому фазовую модуляцию еще очень часто называют фазоразностной модуляцией. Этим подчеркивают, что измеряют не фазу, а разность фаз между двумя последовательными сигналами и по ней определяют, какие были переданы данные.

Основные характеристики модема

Любое компьютерное устройство, имеет свои характеристики. К основным характеристикам модема (рис. 3) относятся:

Максимальная скорость передачи данных, измеряемая в Кбит /сек или бод;

Поддерживаемые протоколы работы;

Возможность работы модема как факса;

Протоколы передачи данных

Скорость передачи модема также зависит от протоколов, с которыми он умеет работать. Протокол передачи данных - это определенный стандарт, по которому модемы взаимодействуют друг с другом. Каждый протокол выполняет определенное действие. Например, один отвечает за коррекцию ошибок во время обмена данными, другой - за метод сжатия данных (позволяет при передаче данных производить их сжатие, что уменьшает время передачи) и т. д. Все протоколы можно разбить на четыре группы:

  • протоколы взаимодействия и модуляции;
  • протоколы сжатия данных;
  • протоколы коррекции ошибок.

В протоколах взаимодействия описан порядок взаимодействия модемов между собой. Е них указывается, что должен сообщить о себе вызывающий модем, и что должен ответить вызываемый модем. Согласно протоколу взаимодействия оба модема вступают в диалог и обмениваются параметрами, необходимыми для создания надежного и максимально производительного соединения.

В современном мире интернет-пользователи получают информацию, исследуют пространство интернета, не задумываясь за счет чего они могут это делать. Почти всегда юзеры путают роутер с тем, что является модемом. Давайте в этой статье разберем, что же это такое.

Предок нынешнего устройства для передачи данных появился в 1962 году . Его создателем является компания AT and T. На тот момент скорость обмена информацией составляла всего триста бит в секунду. Затем в 1991 году эти данные увеличились до четырнадцати килобит в секунду.

Что такое модем

Модем – это устройство для получения и отправления информации через систему телефонной связи. Потоки информации поступают в него, где превращаются в необходимый сигнал, который проходит по телефонной линии. Он поступает на другой конец провода, где еще один такой же аппарат уже демодулирует сигналы, превращая их в компьютерные, и они поступают в компьютер, а затем выводятся на экране пользователя. Само слово произошло от сокращения двух английских: модулятор и демодулятор.

Для чего нужны эти аппараты

Модемы используются для соединения с интернетом через телефонную линию. Это устройство является своего рода мостом между интернетом и домашней или офисной техникой. Современные модели могут использоваться в качестве роутера, разделяя интернет между несколькими устройствами.

Стоит заметить, что полноценно заменить роутер он не сможет, поскольку нет возможности принимать интернет посредством rj45 от провайдера.

Виды и типы модемов

Все подобные гаджеты можно условно разделить по видам и типам. Рассмотрим их конкретнее:

  • По виду подключения модемы изготавливаются проводными и беспроводными. Беспроводные хорошо используются владельцами ноутбуков. Так как они соединяются с ноутбуком посредством usb разъема.

Проводные подключаются к компьютеру при помощи кабеля.

  • По принципу работы делятся на аппаратные и программные. Аппаратные отличаются от программных тем, что все функции обработки сигнала осуществляет сам прибор. Программные же отдают всю работу процессору компьютера.
  • По виду соединения приборы подразделяются на телефонные, мобильные, Dial Up. Аналоговые модемы или Dial Up работают через телефонную сеть. Их скорость достигает всего лишь 56 килобит в секунду. На смену аналоговым гаджетам пришла технология ADSL и сейчас она используется повсеместно. Скорость передачи информации через ADSL достигает 100 мб\с. К мобильным относятся — выпускающиеся в виде брелока. Они работают по протоколам EDGE, 3G, 4G. Скорость передачи данных в 3G равна до 3,5 мб\с. В то время как скорость 4 G равна 100 мб\с.
  • Широкополосные . Это ADSL модемы. На сегодняшний день самые скоростные устройства для передачи данных.

Популярные производители

Модемы выпускает множество фирм. Но самыми популярными из них являются Cisco, Zixel, TP LINK, ASUS. Эти модели славятся тем, что они полноценны. Могут работать, как маршрутизатор .

Часто они оснащены DLNA, файловым и FTP сервером. Кроме этого имеют интерфейс для поддержки до 4 компьютеров. Поддержка веб-интерфейса.

Из чего состоит модем

Практически единственные внешние аппаратные составляющие — это порты входов и выходов. Сюда же относятся универсальный, сигнальный и модемный процессоры , постоянное запоминающее устройство, ОЗУ и индикаторы состояния устройства.

Те функции, которые может выполнять устройство определяются в основном деятельностью универсального процессора и программой, которая находится в ПЗУ. Если обновить ПЗУ или перепрограммировать его, то можно добиться улучшения функций того или иного аппарата.

Сигнальный процессор превращает входящие и исходящие сигналы в нужные тому устройству, которое с ним связано. В ОЗУ буферизируются входящие и исходящие данные, происходят алгоритмы сжатия и другие функции. Адаптеры позволяют обмениваться данными с одной стороны между модемом и линией интернета, а с другой стороны – между компьютером и модемом.

Принцип работы

Этот аппарат (независимо от того USB или стационарный) превращает обычный сигнал в цифровой . В этот прибор встроен некий модулятор, который преобразует данные сигналы. Модулятор превращает сигналы от компьютера, перед тем, как начать передавать информацию, в такие сигналы, которые требует линия интернета. Затем происходит транспортировка данных. А аппарат на другом конце уже демодулирует эти сигналы под те, которые необходимы для ПК с коим он соединен.

Так поставляется информация необходимая пользователю.

Чем отличается роутер от модема

Многие люди путают роутер с модемом. Это не одинаковые аппараты . Роутеры отличаются следующими функциями:

  • Модулятор-демодулятор преобразует сигнал, роутер делит его между пользователями сети.
  • Первый работает с одним юзером, роутер с несколькими.
  • Роутер в отличие от преобразователя сигналов — многофункциональное устройство.
  • Роутерам присваивается собственный IP адрес.

Хотя стоит заметить, что для самых последних моделей такие отличия не актуальны . Практически все функции роутера и модема сейчас идентичны, за исключением того, что роутер не может передавать данные через телефонную линию. В современных устройствах это можно считать главным и единственным отличием.

Строгой классификации модемов не существует по причине разнообразия как самих модемов, так и сфер применения и режимов их работы. Условно модемы можно классифицировать по конструктивному исполнению, области применения, функциональному назначению, типу используемого канала, методу передачи, интеллектуальным возможностям и т.д.

По конструкции модемы делятся на внешние, внутренние, портативные, групповые.

Внешние модемы выпускаются в отдельном корпусе и имеют встроенный или вынесенный блок питания. Их достоинства: наличие световой индикации на лицевой панели, а в последнее время ЖКИ, что позволяет легко определить его состояние; органы управления находятся на лицевой панели, что позволяет управлять модемом и изменять его конфигурацию. На задней панели модема находятся разъемы для подключения к источнику питания, последовательному порту компьютера, телефонной линии (LINE), а также для подключения телефонного аппарата (PHONE). Модемы оснащены внутренним громкоговорителем, иногда имеется регулятор громкости. Недостатки внешних модемов: требуется дополнительная розетка для блока питания, дополнительное место на рабочем столе, модемы зарубежного производства иногда рассчитаны на подключение к электрической сети напряжением 110-115 В, что требует замены блока питания.

Внутренний модем – это плата расширения, вставляемая в соответствующий слот системной шины материнской платы компьютера. Такие модемы не имеют собственного блока питания и получают питающее напряжение от устройства, в которое они установлены. На задней панели модемов имеются разъемы для подключения линии связи и телефона. Достоинства: не нуждаются во включении/выключении, не занимают стандартные COM-порты компьютера, дешевле внешнего модема и т.д. Недостатки: необходимость свободного слота на материнской плате, увеличение нагрузки на блок питания, отсутствие внешней индикации, усложнение установки, перезагрузка всего компьютера при "зависании" модема.

Портативные модемы предназначены для использования совместно с компьютерами Notebook. Такой модем похож на внешний, только уменьшенного размера. Он имеет более прочный корпус и универсальное питание (от электрической сети через адаптер, от автомобильной сети 12 В и от внутренней батареи. Появились модемы, которые подключаются к портативному компьютеру через специальный разъем, через который он также получает питание. Недостатки: такие модемы гораздо дороже других модемов с аналогичными возможностями.

Групповые (стоечные) модемы – это совокупность отдельных модемов, скомпонованных в общий блок и имеющих общие блок питания, устройства отображения и управления. Это профессиональные модемы. И вставляются они не в компьютер, а в специальную модемную стойку, называемую менеджером модемов.

По области применения модемы можно разделить на несколько групп:

    для коммутируемых телефонных каналов - такие модемы должны уметь работать с АТС, различать их сигналы и передавать свои сигналы набора абонентского номера;

    для выделенных (арендуемых) каналов;

    для физических соединительных линий (полоса пропускания не ограничена значением 3400 Гц и зависит от типа и длины кабеля);

    для цифровых систем передачи - подключаются к цифровым каналам, таким как ISDN;

    для сотовых систем связи – поддерживают специальные протоколы модуляции и исправления ошибок, позволяющие эффективно передавать данные в условиях сотовых каналов с высоким уровнем помех и постоянно изменяющимися параметрами;

    для пакетных радиосетей – несколько радиомодемов использует один и тот же радиоканал в режиме множественного доступа;

    для локальных радиосетей – такие радиомодемы обеспечивают передачу данных на небольшие расстояния (до 300 м) с высокой скоростью (2-10 Мбит/с), сопоставимой со скоростью передачи в проводных локальных сетях;

    кабельные модемы –используются для передачи каналов кабельного телевидения; скорость передачи может достигать 10 Мбит/с.

Рассмотрим типы модемов по функциональному назначению .

Факс-модемы . Для увеличения функциональных возможностей в классический модем практически всегда добавляется обмен факсами с факс-аппаратами и с другими факс-модемами. Достоинства факс-модемов:

1. экономия термобумаги,

2. файл-сообщение несколько лучше читается, чем факс,

3. посылка факса с помощью модема производится быстрее,

4. можно программировать посылку нескольких факсов в заданное время,

5. входящие документы удобнее обрабатывать в виде файлов.

Голосовые модемы (VOX) выполняются как расширение факс-модемов. Эти модемы принимают из телефонной сети голосовые сообщения, записывая их в виде компьютерного файла, а также воспроизводят в телефонную сеть ранее сформированные голосовые файлы. Файл можно вывести на динамик компьютера, на отдельную телефонную трубку, подсоединенную к модему или на трубку телефонного аппарата, если использовать специальный переключатель.

SVD модемы позволяют передавать данные и одновременно вести разговор с помощью телефонной трубки, подключенной к модему, причем в дуплексном режиме.

Скоростные модемы - это SR-модемы и кабельные модемы. Используют совсем другие протоколы передачи, чем на телефонных линиях. SR -модемы используются для передачи данных на малые расстояния т.е., когда есть возможность соединить два терминальных устройства прямым кабелем и нет необходимости "втискиваться" в стандартную ширину телефонного канала. Это позволяет увеличить скорость передачи данных до 80 кбит/с на расстояние до 15 км, а для хорошего кабеля типа "витой пары" и меньших расстояний скорость может доходить до 2 Мбит/с. Кабельные модемы используют для передачи каналы кабельного телевидения (скорость передачи достигает 10 Мбит/с).

Радиомодемы вместо телефонных проводов используют радиоэфир как среду для передачи информации. В них вместо телефонного разъема имеется антенный разъем, куда вставляется антенна. Он такой же как и классический модем: подключается к компьютеру через стандартный интерфейс RS-232. В антенный разъем подключается штыревая антенна (до 30 см), или, если нужна большая дальность, - антенный кабель, усилитель и направленная антенна. Кроме того, радиомодем содержит в своем составе радиоприемопередатчик. Применяются в тех случаях, когда прокладка телефонной или кабельной линии затруднена. Главное отличие радиомодемов состоит в том, что они ориентированы на работу в едином радиоканале со многими пользователями, а не в канале типа "точка-точка".

Сотовые модемы используются для мобильной сотовой радиотелефонии. Они не содержат в своем составе приемопередатчиков, а используют приемопередатчики, входящие в состав сотового телефона, передавая в них свои сигналы. Скорость передачи данных и факсимильной информации в таком радиоканале до 14,4 кбит/с (без их сжатия). Эти модемы имеют портативное исполнение и размещены в прочном корпусе. Они используются на зашумленных и нестабильных линиях: спутниковых, сельских и междугородних.

По методу передачи модемы делятся на асинхронные и синхронные. Передача по интерфейсу DTE-DCE может быть синхронной и асинхронной. Модем может работать с компьютером в асинхронном режиме и одновременно с удаленным модемом – в синхронном режиме и наоборот. Тогда можно сказать, что модем работает в синхронно-асинхронном режиме. Чаще всего синхронизация реализуется одни из двух способов, связанных с тем, как работают тактовые генераторы отправителя и получателя: независимо друг от друга (асинхронно) или согласованно (синхронно).

Асинхронный режим передачи используется тогда, когда передаваемые данные генерируются в случайные моменты времени (самим пользователем). В этом случае принимающее устройство должно восстанавливать синхронизацию в начале каждого получаемого символа. Для этого каждый передаваемый символ снабжается дополнительным стартовым и одним или более стоповыми битами.

При синхронном методе передачи объединяется большое число символов или байт в отдельные блоки или кадры. Весь кадр передается как одна цепочка битов без каких либо задержек между восьмибитными элементами. Чтобы принимающее устройство могло обеспечить различные уровни синхронизации, должные выполняться следующие требования:

    передаваемая последовательность не должна содержать длинных последовательностей нулей и единиц, чтобы устройство могло выделять тактовую частоту синхронизации.

    каждый кадр должен иметь зарезервированные последовательности битов или символов, отмечающие его начало и конец.

По интеллектуальным возможностям модемы бывают:

    без системы управления;

    поддерживающие набор АТ-команд; (позволяет пользователю управлять характеристиками модема и параметрами связи).

    с поддержкой команд V.25bis; (позволяет управлять режимами установления соединения и автовызова).

    с фирменной системой команд; (специализированные промышленные модемы).

    поддерживающие протоколы сетевого уровня; (позволяют администратору управлять элементами сети и модемами с удаленного терминала).

Модем выполняет функции и устройств ввода, и устройств вывода информации. Он позволяет соединяться с другими удаленными компьютерами с помощью телефонных линий связи и обмениваться информацией между ЭВМ. Модем на передаче превращает цифровые сигналы в звуки, а на приеме – наоборот.

Модем - устройство для преобразования цифровой информации сигнала в аналоговый (Модуляция) для передачи по аналоговым линиям связи, и обратного преобразования принятого аналогового сигнала снова в цифровой (ДЕМодуляция).

Для чего же это нужно. Так как компьютеры могут обмениваться только цифровыми сигналами, а каналы связи таковы, что наилучшим образом в них проходят аналоговые сигналы, для этого и нужен мостик, преобразующий сигнал - модем. Но модем имеет еще не мало и других функций, основные из них это коррекция ошибок и сжатие данных. Первый режим обеспечивает дополнительные сигналы, посредством которых модемы осуществляют проверку данных на двух концах линии и отбрасывают немаркированную информацию, а второй сжимает информацию для более быстрой и четкой ее передачи, а затем восстанавливает ее на получающем модеме. Оба эти режима заметно увеличивают скорость и чистоту передачи информации, особенно в российских телефонных линиях.

Основные характеристики модемов

Модемы различаются по многим характеристикам: исполнению, поддерживаемым протоколам передачи данных, протоколам коррекции ошибок, возможности голосовой, факсимильной передачи данных.

По исполнению (внешний вид, размещение модема по отношению к компьютеру) модемы бывают: внутренние - вставляются в компьютер как плата расширения; настольные (внешние) имеют отдельный корпус и размещается рядом с компьютером, соединяясь кабелем с портом компьютера, модем в виде карточки миниатюрен и подсоединяется к портативному компьютеру через специальный разъем, портативный модем схож с настольным модемом, но имеет уменьшенные размеры и автономное питание; стоечные модемы вставляются в специальную модемную стойку, повышающую удобство эксплуатации, когда число модемов переваливает за десяток.

Модемы различаются также по типам: асинхронный модем может выполнять только передачу по аналоговой, телефонной сети и работает только с асинхронными коммуникационными портами терминальных устройств (в чистом виде в настоящее время не используется);

факс модем - это классический модем с добавленной факс возможностью, что позволяет обмениваться факсами с факс аппаратами и другими факс модемами;

модем с подстраховкой выделенной линии коммутируемой - эти модемы используются, когда требуется надежность связи. У них имеется два независимых входа для линии (Один соединяется с выделенной линией, а второй - с коммутируемой);

синхронный модем - поддержки синхронный и асинхронный режима передачи;

четырех проводный модем - эти модемы работают по двум выделенным линиям, одна используется только для передачи, вторая только для приема) в дуплексном режиме. Это используется для уменьшения влияния эха;

сотовый модем - используются для мобильной радиотелефонии, к которой относится и сотовая связь;

ISDN модем - объединяют в своем корпусе обычный модем и ISDN адаптер;

радио модем использует эфир как среду передачи вместо телефонных проводов;

сетевой модем - это модемы со встроенным сетевым адаптером локальной сети для совместного использования в локальной сети;

кабельный модем - эти модемы позволяют использовать для передачи каналы кабельного телевидения. При этом Скорость может достигать 10 Мбит\с.

Модемы также характеризуются скоростью передачи данных. Она измеряется в bps (бит в секунду) и устанавливается фирмой- производителем в 2400, 9600, 14400, 16800, 19200, 28800, 33600, 56000 bps.


Дисководы для CD дисков. Назначение. Основные характеристики.

Принцип работы дисковода CD-ROM. Поверхность оптического диска перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска.

При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое - в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы.

Емкость CD-ROM составляет 640-700 Мбайт. Носителем информации на СD-диске является рельефная подложка из поликарбоната, на которую нанесен тонкий слой отражающего свет металла.

CD-ROM диски предназначены только для чтения информации, а не для записи.

Производительность дисководов CD-ROM. Обычно определяется его скоростными характеристиками при непрерывной передаче данных в течение некоторого промежутка времени и средним временем доступа к данным, измеряемыми соответственно в Кбайт/с и мс. Существуют одно-, двух-, трех-, четырех-, пяти, шести и восьмискоростные дисководы, обеспечивающие считывание данных со скоростью 150, 300, 450, 600, 750, 900, 1200 Кбайт/с соответственно. Важной характеристикой дисковода является степень заполнения буфера, которая влияет на качество воспроизведения анимационных изображений и видеофильмов.

Конструктивные особенности приводов CD-ROM

Как известно, большинство накопителей бывают внешними и встраиваемыми (внутренними). Приводы компакт-дисков в этом смысле не являются исключением. Большинство предлагаемых в настоящее время накопителей CD-ROM являются встраиваемыми.

На передней панели каждого накопителя имеется доступ к механизму загрузки компакт-диска. Одним из самых распространенных является механизм загрузки CD-ROM с помощью caddy.

CD-R. Дисковод с возможностью однократной записи информации на специальный диск. Запись на диски CD-R осуществляется благодаря наличию на них особого светочувствительного слоя, выгорающего под воздействием высокотемпературного лазерного луча.

Скорость записи информации на диски CD-R на современных моделях дисководов может доходить до 20-кратной. Однако очень важно при этом подбирать для записи именно такие болванки, маркировка которых совпадает со скоростной маркировкой вашего дисковода (4х, Sx, 10x, 12x, 14x и т. д.). Большинство продаваемых сегодня «болванок» должно поддерживать, как минимум, восьмикратную скорость записи.

CD-RW. Сегодня CD-R дисководы фактически сошли со сцены. Им на смену пришли приводы нового стандарта, которые умеют записывать не только CD-R, но и диски многократной записи - CD-RW. При записи этих дисков используется совершенно иная, отличная от CD-R технология, да и устроены они по-другому.

Диск CD-RW представляет из себя как бы слоеный пирог, где на металлической основе покоится рабочий, активный слой. Он состоит из специального материала, который под воздействием лазерного луча изменяет свое состояние. Находясь в кристаллическом состоянии, одни участки слоя рассеивают свет, а другие - аморфные - пропускают его через себя, на отражающую металлическую подложку. Благодаря такой технологии на диск можно записывать информацию, а не только читать ее.

Скоростные характеристики обычно указываются в названии дисковода - например, 12×8x32, где меньшая величина соответствует скорости записи CD-RW, а максимальная - скорости чтения.


ПЗУ. Назначение. Состав.

В постоянном запоминающем устройстве (ПЗУ) хранится информация, которая не изменяется при работе ЭВМ. Такую информацию составляют тест-мониторные программы (они проверяют работоспособность компьютера в момент его включения), драйверы (программы, управляющие работой отдельных устройств ЭВМ, например, клавиатурой) и др. ПЗУ является энергонезависимым устройством, поэтому информация в нем сохраняется даже при выключении электропитания.

Постоянная память (ПЗУ- память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом “зашивается” в микросхеме BIOS при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

BIOS – это базовая система ввода-вывода. BIOS представляет собой сложную систему, состоящую из большого количества утилит, предназначенных для автоматического распознавания установленного на компьютер оборудования, его настройки и проверки функционирования.

В состав этой системы входят различные программы ввода-вывода, которые обеспечивают взаимодействие между операционной системой, прикладными программами с одной стороны и устройствами, входящими в состав компьютера (внутренними и внешними) с другой.

Первоначально BIOS предназначалась для осуществления тестирования компьютера при включении. В настоящее время BIOS представляет собой сложную систему, состоящую из большого количества утилит, предназначенных для автоматического распознавания установленного на компьютер оборудования, его настройки и проверки функционирования. Наиболее перспективной для хранения системы BIOS является флэш-память (сменные карты памяти). Она позволяет модифицировать функции для поддержки новых устройств, подключаемых к компьютеру.Система BIOS неразрывно связана с СMOS RAM .

CMOS (полупостоянная память ) - небольшой участок памяти для хранения параметров конфигурации компьютера, который регулируется с помощью утилиты CMOS Setup Utility. Обладает низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор. Используется для хранения информации о конфигурации и составе оборудования комп-ра, хранит инфо о гибких и жестких дисках, о процессоре, а также показания системы часов.


ОЗУ. Назначение. Состав.

Оперативная память (также оперативное запоминающее устройство, ОЗУ) - в информатике - память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Она предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Оперативное запоминающее устройство (ОЗУ) используется для кратковременного хранения переменной (текущей) информации и допускает изменение своего содержимого в ходе выполнения процессором вычислительных операций. Это значит, что процессор может выбрать из ОЗУ команду или обрабатываемые данные (режим считывания) и после арифметической или логической обработки данных поместить полученный результат в ОЗУ (режим записи). Размещение новых данных в ОЗУ возможно на тех же местах (в тех же ячейках), где находились исходные данные. Понятно, что прежние команды (или данные) будут стерты.

ОЗУ используется для хранения программ, составляемых пользователем, а также исходных, конечных и промежуточных данных, получающихся при работе процессора.

В качестве запоминающих элементов в ОЗУ используются либо триггеры (статическое ОЗУ), либо конденсаторы (динамическое ОЗУ). ОЗУ - это энергозависимая память, поэтому при выключении питания информация, хранившаяся в ОЗУ, теряется безвозвратно.

На сегодня наибольшее распространение имеют два вида ОЗУ:SRAM (Static RAM) . ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.

DRAM (Dynamic RAM)

Более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени. Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.