Сообщение на тему закон ома. Закон ома для полной цепи

25.09.2019 Интернет

Л юбая электрическая цепь обязательно содержит в себе источник электрической энергии и ее приемник. В качестве примера рассмотрим простейшую электрическую цепь, состоящую из батарейки и лампочки накаливания.

Батарейка - это источник электрической энергии, лампочка - ее приемник. Между полюсами источника электроэнергии имеется разность потенциалов(+ и -), при замыкании цепи начинается процесс ее выравнивания под действием электродвижущей силы, сокращенно - ЭДС. По цепи протекает электрический ток, совершая работу - нагревая спираль эл.лампочки, спираль начинает светиться.

Таким образом происходит преобразование электрической энергии в энергию тепловую и энергию света.
Электрический ток(J) представляет из себя упорядоченное движение заряженных частиц, в данном случае - электронов.
Электроны имеют отрицательный заряд, и по этому, их движение направлено к положительному(+) полюсу источника питания.

При этом, всегда образуется электромагнитное поле, распостраняясь от (+) к (-) источника(навстречу движению электронов) через электрическую цепь со скоростью света. Традиционно, принято считать, что электрический ток(J) движется от положительного(+) полюса к отрицательному(-).

Упорядоченное движение электронов, через кристаллическую решетку вещества, являющегося проводником не проходит беспрепятственно. Электроны взаимодействуют с атомами вещества, вызывая его нагрев. Таким образом, вещество оказывает сопротивление (R), протекающему через него, электрическому току. И чем больше величина сопротивления, при той же величине тока - тем сильнее нагрев.

Электрическое сопротивление - это величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах . Электрическое напряжение (U)- величина разности потенциалов источника электрического тока. Электрическое напряжение (U), электрическое сопротивление (R),электрический ток (J) - это основные свойства простейшей электрической цепи, между собой они находятся в определенной зависимости.

Напряжение.
Сопротивление.
Сила тока.
Мощность.

С помощью калькулятора Закона Ома, расположенного выше, можно легко вычислить значения силы тока, напряжения и сопротивления любого приемника электрической энергии. Так же, подставляя значения напряжения и тока, можно определить его мощность, и наоборот.

Например, необходимо узнать ток потребляемый эл. чайником, мощностью 2,2квт.
В графу "Напряжение" подставляем значение напряжения нашей сети в вольтах - 220.
В графу "Мощность", соответственно, вводим значение мощности в ваттах 2200 (2.2квт) Нажимаем кнопку "Узнать силу тока" - получаем результат в амперах - 10. Если далее нажать кнопку "Сопротивление" , можно узнать, в добавок и электрическое сопротивление нашего чайника, во время его работы - 22 ома.

С помощью расположенного выше калькулятора, можно легко расчитать величину общего сопротивления для двух сопротивлений, подключенных параллельно.

Второй закон Кирхгофа гласит: в замкнутой электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на отдельных участках цепи. Согласно этому закону для схемы изображенной на рисунке ниже можно записать:

R об =R 1 +R 2

Т. е. при последовательном соединении элементов цепи общее сопротивление цепи равно сумме сопротивлений составляющих ее элементов, а напряжение распределяется между ними, пропорционально сопротивлению каждого.
Например, в новогодней гирлянде состоящей из 100 маленьких одинаковых лампочек, каждая из которых рассчитана на напряжение 2,5 вольт, включенной в сеть напряжением 220 вольт, на каждую лампочку будет приходиться 220/100=2,2 вольта.
И, конечно же, при таком раскладе она будет работать долго и счастливо.

Переменный ток.

Переменный ток в отличии от постоянного, не имеет постоянного направления. Например, в обычной бытовой эл. сети 220 вольт 50 герц, плюс с минусом меняются местами 50 раз в секунду. Законы Ома и Кирхгофа для цепи постоянного, тока применимы так же для цепей тока переменного, но только для электрических приемников обладающих активным сопротивлением в чистом виде, т. е. таких, как различные нагревательные элементы и лампочки накаливания.

Причем, все расчеты производятся с действующими значениями тока и напряжения. Действующее значение силы переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока. Действующее значение Jперем.= 0,707*Jпост. Действующее значение Uперем.= 0,707*Uпост. Например в нашей домашней сети действующее значение переменного напряжения - 220 вольт, а максимальное (амплитудное) его значение = 220*(1 / 0,707) = 310 вольт.

Роль законов Ома и Кирхгофа, в повседневной жизни электрика.

Осуществляя свою трудовую деятельность, электрик (абсолютно любой и каждый), ежедневно сталкивается со следствиями этих фундаментальных законов и правил, можно сказать - живет в их реальности. Использует ли он теоретические знания, с большим трудом полученные в различных учебных заведениях, для выполнения повседневных трудовых обязанностей?
Как правило - нет! Чаще всего, просто - напросто, в отсутствии какой либо необходимости, это делать.

Ибо повседневная работа нормального электрика, состоит вовсе не из умственных вычислений, а наоборот - из четких, отточенных годами, физических действий. Нельзя сказать, что думать вовсе не приходиться. Совсем наоборот - ведь последствия необдуманных действий в этой профессии, обходятся порой, весьма дорого.

Иногда, встречаются среди электриков конструктора - любители, они же, чаще всего - рационализаторы. Эти люди, время от времени, используют имеющиеся у них теоретические знания с пользой для дела, разрабатывая и конструируя разнообразные устройства, как в личных целях, так и во благо родного производства. Без знания законов Ома и Кирхгофа, расчеты электрических цепей, составляющих схему будущего устройства совершенно невозможны.

В целом, можно сказать, что законы Ома и Кирхгофа являются в большей степени "инструментом" инженера - конструктора, нежели электромонтера.


В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности Х L и емкости X C . А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления Х L и X C , которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и . Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: f ном = 50 Гц, U ном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен.

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt - напряжение или разность потенциалов,
  • I - сила тока,
  • Z = Re i δ - комплексное сопротивление (электрический импеданс),
  • R = R a 2 + R r 2 - полное сопротивление,
  • R r = ωL − 1/(ωC ) - реактивное сопротивление (разность индуктивного и емкостного),
  • R а - активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) - сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U 0 sin ⁡ (ω t + φ) {\displaystyle U=U_{0}\sin(\omega t+\varphi)} подбором такой U = U 0 e i (ω t + φ) , {\displaystyle \mathbb {U} =U_{0}e^{i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

Сегодня открываю новый раздел на сайте под названием .

В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый .

Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

Кто такой Ом? Немного истории

Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

Скажу только самое главное.

Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

Закон Ома для однородного участка цепи выглядит следующим образом:

I – значение тока, идущего через участок цепи (измеряется в амперах)

U – значение напряжения на участке цепи (измеряется в вольтах)

R – значение сопротивления участка цепи (измеряется в Омах)

Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

Проведем эксперимент

Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

Пример № 1

В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

Напряжение источника постоянного напряжения составляет U = 220 (В) . Сопротивление светодиодной лампочки равно R = 40740 (Ом) .

С помощью формулы найдем ток в цепи:

I = U/R = 220 / 40740 = 0,0054 (А)

Подключаем последовательно светодиодной лампочке , включенный в режиме амперметр, и замеряем ток в цепи.

На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

Пример № 2

Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

I = 0,0054 (А)

R = 40740 (Ом)

С помощью формулы найдем напряжение участка цепи:

U = I*R = 0,0054 *40740 = 219,9 (В) = 220 (В)

А теперь проверим полученный результат практическим путем.

Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

Пример № 3

В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

I = 0,0054 (А)

U = 220 (В)

Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

R = U/ I = 220/0,0054 = 40740,7 (Ом)

А теперь проверим полученный результат практическим путем.

Сопротивление светодиодной лампочки мы измеряем с помощью или мультиметра.

Полученное значение составило R = 40740 (Ом) , что соответствует сопротивлению, найденному по формуле.

Как легко запомнить Закон Ома для участка цепи!!!

Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

Как этим пользоваться?

Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

Выводы

В завершении статьи сделаю вывод.

Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т.е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи.