Циклическая частота. Что такое частота колебаний? Уравнение затухающих колебаний

16.06.2022 Игры

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

В мире, окружающем нас, есть много явлений и процессов, которые, по большому счету, незаметны не потому, что их нет, а потому, что мы их попросту не замечаем. Они присутствуют всегда и являются такой же незаметной и обязательной сущностью вещей, без которой нашу жизнь и представить трудно. Каждому, например, известно, что такое колебание: в самом общем виде - это отклонение от состояния равновесия. Ну, хорошо, отклонилась верхушка Останкинской башни на свои 5 м, а что дальше? Так и застынет? Ничего подобного, начнет возвращаться назад, проскочит состояние равновесия и будет отклоняться в другую сторону, и так вечно, пока она будет существовать. А скажите, много людей реально видели эти вполне серьезные колебания такого огромного сооружения? Все знают, колеблется, сюда-туда, сюда-туда, и днем и ночью, зимой и летом, но как-то… не заметно. Причины колебательного процесса - это другой вопрос, но его наличие - неотделимый признак всего сущего.

Колеблется все вокруг: здания, сооружения, маятники часов, листья на деревьях, струны скрипки, поверхность океана, ножки камертона… Среди колебаний различают хаотичные, которые не имеют строгой повторяемости, и циклические, у которых за временной период Т колеблющееся тело проходит полный набор своих изменений, а затем этот цикл в точности повторяется, вообще говоря, бесконечно долго. Обычно эти изменения подразумевают последовательный перебор пространственных координат, как это можно наблюдать на примере колебаний маятника или той же башни.

Количество колебаний в единицу времени называется частотой F = 1/T. Единица измерения частоты - Гц = 1/сек. Понятное дело, что циклическая частота является параметром одноименных колебаний любого вида. Тем не менее, на практике принято это понятие, с некоторыми дополнениями, относить преимущественно к колебаниям вращательного характера. Так уж сложилось в технике, что является основой большинства станков, механизмов, устройств. Для таких колебаний один цикл составляет один оборот, и тогда удобнее использовать угловые параметры перемещения. Исходя из этого, вращательное перемещение измеряют угловыми единицами, т.е. один оборот равен 2π радиан, а циклическая частота ῳ = 2π / T. Из этого выражения легко просматривается связь c частотой F: ῳ = 2πF. Это позволяет сказать, что циклическая частота - это количество колебаний (полных оборотов) за 2π секунд.

Казалось бы, не в лоб, так… Не совсем так. Множители 2π и 2πF применяются во многих уравнениях электроники, математической и теоретической физики в разделах, где колебательные процессы изучаются с использованием понятия циклическая частота. Формула резонансной частоты, например, сокращается на два сомножителя. В случае использования в расчетах единицы «об./сек» угловая, циклическая, частота ῳ численно совпадает со значением частоты F.

Колебания, как суть и форма существования материи, и ее вещественного воплощения - предметов нашего бытия, имеют большое значение в жизни человека. Знание законов колебаний позволило создать современную электронику, электротехнику, многие современные машины. К сожалению, колебания не всегда приносят положительный эффект, иногда они приносят горе и разрушения. Неучтённые колебания, причина многих аварий, вызывают материалов, а циклическая частота резонансных колебаний мостов, плотин, деталей машин приводит к их преждевременному выходу из строя. Изучение колебательных процессов, умение предсказать поведение природных и технических объектов с целью предотвратить их разрушение или выход из рабочего состояния - основная задача многих инженерных приложений, а обследование промышленных объектов и механизмов на виброустойчивость - обязательный элемент эксплуатационного обслуживания.

Определение

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний .

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим ${\omega }_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2\ $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол ${\varphi }_0$. Через некоторый промежуток времени этот угол изменится на величину ${\omega }_0t$ и будет равен ${\omega }_0t+{\varphi }_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ - это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О - центра окружности), называется амплитудой колебаний.

Параметр ${\omega }_0$ - циклическая частота колебаний. $\varphi =({\omega }_0t+{\varphi }_0$) - фаза колебаний; ${\varphi }_0$ - начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

При ${\varphi }_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна ${\varphi }_0=\frac{\pi }{2}$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ - это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

\[{\omega }_0=\frac{2\pi }{T}\left(5\right).\]

Циклическую частоту с частотой $?$$?$ свяжем выражением:

\[{\omega }_0=2\pi \nu \ \left(6\right).\]

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Размерность циклической частоты:

\[{\dim \left({\omega }_0\right)=\frac{1}{t},\ }\]

где $t$ - время.

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник - идеальная модель) совершает гармонические колебания с круговой частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(7\right),\]

$k$ - коэффициент упругости пружины; $m$ - масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(8\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(9\right),\]

где $l$ - длина подвеса.

Угловая частота затухающих колебаний находится как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(10\right),\]

где $\delta $ - коэффициент затухания; в случае с затуханием колебаний ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна ${\dot{x}}_{max}=10\ \frac{см}{с}$, а ее максимальное ускорение ${\ddot{x}}_{max}=100\ \frac{см}{с^2}$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

\[{\dot{x}}_{max}=A{\omega }_0\to A=\frac{{\dot{x}}_{max}}{{\omega }_0};;\ {\ddot{x}}_{max}=A{щ_0}^2=\frac{{\dot{x}}_{max}}{щ_0}{щ_0}^2\to щ_0=\frac{{\ddot{x}}_{max}}{{\dot{x}}_{max}}.\]

Вычислим циклическую частоту:

\[щ_0=\frac{100}{10}=10(\frac{рад}{с}).\]

Ответ: $щ_0=10\frac{{\rm рад}}{{\rm с}}$

Пример 2

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(2.1\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $\frac{m}{2}$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

\[{\omega }_0=\sqrt{\frac{mg\frac{3}{4}l\ }{\frac{5}{8}ml^2}}=\sqrt{\frac{6g}{5l}}.\]

Ответ: ${\omega }_0=\sqrt{\frac{6g}{5l}}$

6.Колебания

6.1.Основные понятия и законы

Движение называется периодическим , если

x(t) = x(t + T ) , где T

Колебание

периодическое

движение

положения равновесия. На рис.6.1 в

качестве

изображены

периодические

негармонические

колебания

положения

равновесия

x 0 = 0.

Период T – это время, за

совершается

колебание.

колебаний в единицу времени

Круговая (циклическая) частота

ω= 2 πν =

Гармоническими

называются колебания, при которых смещение

от положения равновесия в зависимости от времени

изменяется по закону синуса или косинуса

x = A sin (ω0 t + α)

где A

амплитуда колебаний (максимальное смещение точки от

положения равновесия), ω 0 - круговая частота гармонических колебаний, ω 0 t + α - фаза, α - начальная фаза (при t = 0).

Система, совершающая гармонические колебания, называется

классическим гармоническим осциллятором или колебательной

системой.

Скорость

и ускорение

гармонических колебаниях

изменяются по законам

X = A ω0 cos (ω0 t + α) ,

d 2 x

= −A ω0 sin (ω0 t + α) .

Из соотношений (6.6) и (6.4) получим

a = −ω 2 x ,

откуда следует, что при гармонических колебаниях ускорение прямо пропорционально смещению точки от положения равновесия и направлено противоположно смещению.

Из уравнений (6,6), (6,7) получим

+ ω0 x = 0 .

Уравнение (6.8) называется дифференциальным уравнением гармонических колебаний, а (6.4) является его решением. Подставив

(6.7) во второй закон Ньютона F = ma r , получим силу, под действием которой происходят гармонические колебания

Эта сила, прямо пропорциональная смещению точки от положения равновесия и направленная противоположно смещению, называется возвращающей силой, k называется коэффициентом возвращающей силы . Таким свойством обладает сила упругости . Силы другой физической природы, подчиняющиеся закону (6.11),

называются квазиупругими.

Колебания, происходящие под действием сил, обладающих

свойством

называются

собственными

(свободными

гармоническими) колебаниями.

Из соотношений (6.3),(6.10) получим круговую частоту и период

этих колебаний

T = 2 π

При гармонических колебаниях по закону (6.4) зависимости кинетической и потенциальной энергии от времени имеют вид

mA2 ω 0

cos 2 (ω t + α) ,

mA2 ω 0

sin 2 (ω t + α) .

Полная энергия в процессе гармонических колебаний сохраняется

EK + U = const .

Подставляя в (6.15) выражения (6.4) и (6.5) для x и v , получим

E = E K max = U max

mA2 ω 2

Примером классического

гармонического

осциллятора является легкая пружина, к которой

подвешен груз массой m

(рис.6.2). Коэффициент

возвращающей силы k называется коэффициентом

жесткости пружины.

Из второго закона Ньютона

для груза

на пружине

– kx получим

уравнение,

совпадающее

дифференциальным

уравнением

гармонических

колебаний (6.8) Следовательно, груз на пружине

при отсутствии сил сопротивления среды будет

совершать гармонические колебания (6.4).

Гармонические

колебания

представить в виде проекции на оси координат вектора, величина которого равна амплитуде A , вращающегося вокруг начала координат с угловой скоростью ω 0 . На этом представлении основан метод

векторных диаграмм сложения гармонических колебаний с

одинаковой частотой, происходящих по одной оси

x 1 = A 1 sin (ω t + ϕ 1 ) ,

x 2 = A 2 sin (ω t + ϕ 2 ) .

Амплитуда результирующего колебания определяется по

теореме косинусов

− 2 A A cos (ϕ −ϕ

Начальная фаза результирующего колебания ϕ

может быть

найдена из формулы

tg ϕ =

A 1 sin ϕ 1 + A 2 sin ϕ 2

A cosϕ + A cosϕ

При сложении однонаправленных колебаний с близкими

частотами ω 1 и ω 2

возникают биения , частота которых равна ω 1 − ω 2 .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

x = A 1 sin ((ω t + ϕ 1 ) ) , (6.20) y = A 2 sin ω t + ϕ 2

имеет вид

− 2

cos (ϕ −ϕ

) = sin 2 (ϕ

−ϕ ) .

Если начальные фазы ϕ 1 = ϕ 2 , то уравнение траектории – прямая

x , или y = −

ϕ = ϕ1 − ϕ2 = π 2 ,

разность

точка движется по эллипсу

Физический маятник – это твердое тело,

способное

совершать

колебания

закрепленной оси, проходящей через точку

совпадающую

(рис.6.3). Колебания являются гармоническими

при малых углах отклонения.

Момент силы тяжести относительно оси,

проходящей

является

возвращающим

моментом

выражается

соотношением

M = mgd sin

ϕ ≈ mgd ϕ.

Основное уравнение динамики вращательного движения имеет вид (см. формулу (4.18))

M = I ε , (6.23)

где I - момент инерции маятника относительно оси, проходящей через точку О , ε - угловое ускорение.

Из (6.23), (6.22) получим дифференциальное уравнение гармонических колебаний физического маятника

d 2 ϕ

ϕ = 0 .

Его решения ϕ = ϕ 0 sin ω 0 t ,

mgd .

Из (6.3) получим формулу периода колебаний физического маятника

T = 2 π I .

M = − c ϕ .

Коэффициент возвращающего момента зависит от материала проволоки и ее размеров

где G - модуль сдвига, характеризующий упругие свойства материала, r - радиус проволоки, L - ее длина.

Основное уравнение динамики вращательного

движения имеетr вид

Его решение имеет вид ϕ = ϕ 0 sin (ω 0 t + α ) ,

где ϕ - угловое смещение от положения равновесия, ϕ 0 – амплитуда

колебаний.

Сравнив уравнения (6.8) и (6.32), получим значения угловой частоты и периода крутильных колебаний

T = 2 π

Свободные колебания становятся затухающими из-за наличия сил сопротивления. Например, когда материальная точка колеблется в вязкой среде, при малых скоростях на нее действует сила

сопротивления

r - коэффициент

среды F сопр = − rv

= −rx ,

сопротивления среды. Поэтому из второго закона Ньютона

mx = − kx − rx

получим дифференциальное уравнение затухающих колебаний

M x + m x = 0 .

Его решение для случая, когда

имеет вид

x = A e−β t

sin(ω t + α ) ,

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.