Классификация каналов связи. Симплексный

30.07.2019 Разное

Обратная связь

Данный принцип работы, естественно подразумевает только соединение типа точка-точка. Но это скорее большой плюс, чем минус. Дело в том, что в этом случае отпадает необходимость в каком либо ручном тюнинге (согласовании), установке дополнительных резисторов (они уже встроены), а сама линия всегда будет работать в наиболее оптимальном режиме. Все что потребуется это обжать концы кабеля в типовые телефонные коннекторы и воткнуть в соответствующие гнезда, по аналогии с тем как монтируются сети Ethernet. На следующем рисунке представлена схема сети RS-.5.

Рисунок 2

В моей реализации преобразователи RS-.5 не имеют собственного источника питания трансмиттера. Дело в том, что кабель типа витая пара всегда имеет как минимум 2 пары проводов. Поэтому, я задействовал еще одну пару проводов для передачи напряжения питания всех трансмиттеров в линии/сети. Это позволяет избавиться от dc/dc конвертеров (вещь довольно не дешевая). Все приемопередающие части преобразователей можно питать от одного источника питания. Если сеть большая ИП может быть и больше чем один естественно.
На картинке нарисована коробочка с двумя портами и надписью RS-.5 Switch - на самом деле возможность коммутировать данные в сети асинхронной передачи данных определяется используемым протоколом. На практике я такого не встречал ни в одном протоколе, но реализовать нетрудно.

После проработки основных принципов была разработана принципиальная схема UART to RS.5 трансмиттера (Рисунок 3).

Рисунок 3

Хотя там разрабатывать нечего. Оптроны выбрал самые дешевые из не самых медленных - H11L1. Заявленная скорость до 1Мб. На скорости 115200 работает хорошо. Хотя есть неприятный момент: один оптрон работал вплоть до скорости 921 600 бит в секунду, тогда как другой спотыкался уже на 230 400 бит в секунду. При осциллографической диагностике оказалось что все оптроны H11L1 перетягивают задний фронт. В общем это не проблема, можно оптроны подобрать по вкусу.
Так все выглядит в железе (конечно же это тестовые железки):

Рисунок 4

Рисунок 5

Интересная особенность: если с одного конца отсоединить коннектор, то трансмиттер на другом конце будет принимать свое эхо. В дальнейшем хочу попробовать на основе этого эффекта и на таком же модуле сделать измеритель длины кабеля.

Ответ:

В повседневной жизни мы общаемся между собой в дуплексном режиме, т. е. мы можем одновременно говорить и слышать собеседника. Глухари, например, во время тока, исполненяя брачную песню, ничего вокруг не слышат, т. е., говоря научным языком, общаются в симплексном режиме (поочередно обмениваются друг с другом информацией). В техническом плане возможен промежуточный вариант, так называемый двухчастотный симплекс, или полудуплекс, но с точки зрения конечного пользователя он эквивалентен симплексу.

Таким образом, дуплекс более привычен и естественен для общения. Обычная телефонная связь, в том числе и в сотовых сетях, осуществляется в дуплексном режиме. Однако дуплекс не лишен недостатков. Симплексный же режим, несмотря на некоторые неудобства при радиообмене, имеет ряд преимуществ в техническом плане.

    В симплексе достаточно просто реализуется один из основных режимов радиообмена в сетях ПМР - групповой вызов и различные его вариации. В современных дуплексных сетях возможна организация так называемой конференц-связи, однако для оперативной связи она малопригодна, так как включение режима требует определенного времени.

    Дуплексный режим менее экономичен. Это вызвано тем, что для сохранения радиоканала в обоих направлениях передатчик мобильной станции работает непрерывно, в то время как разговор обычно происходит в виде диалога или монолога, поэтому в среднем 50 % времени передачи сигнала в одном из направлений не требуется, и энергия источника питания расходуется неоптимально. В симплексных радиостанциях энергия источника питания используется более рационально.

    В условиях неустойчивой связи дуплекс менее надежен, так как требуется поддержание надежного канала связи в обоих направлениях.

    В техническом плане реализация дуплексного режима значительно сложнее, так как требуется применение дополнительных технических решений для обеспечения одновременной работы приемника и передатчика, поэтому дуплексные радиостанции обычно дороже симплексных.

    При организации сети связи, радиосредства которой работают в симплексном режиме, как правило, требуется значительно меньше каналов связи. Тем самым симплексный режим способствует экономии ресурсов радиочастотного спектра.

    Следует отметить, что в отдельных случаях решающим фактором выполнения задачи может оказаться возможность передачи сообщения от диспетчера стационарной радиостанции мобильным абонентам, даже если по каким-либо причинам обратный канал связи невозможен. При симплексном режиме это не вызовет затруднения, в дуплексе такое невозможно.

Многие сети профессиональной мобильной радиосвязи позволяют одновременно использовать абонентские радиостанции как в дуплексном, так и в симплексном режимах. В этом случае базовая станция работает в дуплексном режиме, а симплексная абонентская радиостанция - в полудуплексном, т. е. с разносом частот приема и передачи и поочередным включением этих режимов. Учитывая изложенное, можно дать следующие общие рекомендации: для систем связи, имеющих выход на телефонную сеть, использование дуплексного режима работы абонентских терминалов может быть целесообразно, для оперативной радиосвязи - оптимальным вариантом является симплексный режим работы станций.

Симплексной радиосвязью принято называть одностороннюю радиоэлектронную связь между двумя людьми, в которой прием и отправка голосовых сообщений осуществляется с помощью одного радиоканала.

Другими словами, если используется симплексная радиосвязь, то второй пользователь сети, который должен получить отправленное сообщение, не сможет ничего предпринять кроме приема голосовых данных.

То есть, второй пользователь такой радиосети не сможет ни отправить ответное сообщение, ни дать подтверждение о приеме.

Дуплексная радиосвязь

Дуплексной радиосвязью называют двухстороннюю радиосвязь между несколькими участниками радиосети. То есть, к примеру, оба абонента радиосети могут одновременно и принимать, и отправлять голосовые сообщения, используя, при этом, один и тот же радиоканал связи.

Самый наглядный пример дуплексной радиосвязи - разговор по телефону (как стационарному, так и мобильному). Но, на практике, для передачи и приема применяются два разных радиоканала.

Всего одна радиолиния может прекрасно справиться с реализацией нескольких каналов связи. Такая система будет называться многоканальной.

Двухсторонняя радиосвязь

Такая связь предполагает возможность осуществления одновременной передачи и приема сообщений каждым приемопередатчиком.

Чтобы реализовать двухстороннюю связь, необходима как минимум пара оборудования для симплексной связи. То есть, каждая точка сети должна иметь и радиоприемное, и радиопередающее устройство.

Стоит отметить, что двухсторонняя связь может быть как симплексной, так и дуплексной. Разберемся с каждой вариацией подробнее:

  • Дуплексная двухсторонняя связь . Передача и получения информации производится одновременно
  • Симплексная двухсторонняя связь . Отправка и прием сообщений осуществляется каждой радиостанцией по очереди

А) - организация симплексной радиосвязи, В) - организация дуплексной радиосвязи

При симплексной радиосвязи приемопередатчики на обеих концах радиосети будут функционировать на одной и той же радиочастоте. При дуплексной - на двух разных частотах, одна для приема, другая - для передачи информации. Последнее реализовано для того, чтобы радиоприемник получал данные только от передатчика, находящегося на другом конце сети, а не принимал свои собственные сигналы.

В дуплексной радиосети во время приема или отправки голосовых сообщений каждый приемник и передатчик должны постоянно находиться во включенном состоянии. Точнее - в то время, когда осуществляется передача данных через радиолинию.

Если вы хотите глубже вникнуть в работу симплексных и дуплексных сетей, а также, радиоустройств, которые в них входят, звоните в нашу Компанию по номеру телефона, указанному выше.

Соединения WiFi работает в полудуплексном режиме, а проводная часть локальной сети в полном дуплексе. Узнайте больше прочитав эту статью.

Дуплекс против симплекса

В сети термин «дуплекс» означает возможность для двух точек или устройств связываться друг с другом в оба направления, в отличие от «симплекса», который относится к однонаправленной коммуникации. В системе дуплексной связи, обе точки (устройства) могут передавать и получать информацию. Примерами дуплексных систем являются телефоны и рации.

С другой стороны, в симплекс системе одно устройство передает информацию, а другое получает. Пульт дистанционного управления является примером системы симплекс, где пульт дистанционного управления передает сигналы, но не получает их в ответ.

Полный и полудуплекс

Полная дуплексная связь между двумя компонентами означает, что оба могут передавать и получать информацию друг другу одновременно. Телефоны являются полными дуплексными системами, так как обе стороны могут говорить и слушать одновременно.

В полудуплексных системах передача и прием информации должны происходить поочередно. Во время передачи одной точки, остальные должны только получать. Рации являются полудуплексными системами, в конце передачи участник должен сказать «Прием», это означает, что он готов получать информацию.


WiFi роутеры (маршрутизаторы) - это устройства, которые модулируют и планируют потоки информации из и от любого WiFi-совместимого электронного устройства (например, ноутбук или смартфон) к сети Интернет, используя определенный стандарт или протокол, называемый IEEE 802.11, который работает в полудуплексном режиме. WiFi это только торговая марка для определенного стандарта IEEE.

WiFi устройства подключаются к маршрутизатору с помощью радиоволн частотой 2,4 ГГц или 5 ГГц. Маршрутизатор гарантирует правильное распределение информационных потоков между подключенным устройством и Интернетом; с помощью процесса вызова с временным разделением каналов (TDD) который работает в режиме полного дуплекса.

TDD эмулирует полную дуплексную связь путем создания или деления периодов времени, которые чередуются между передачей и приемом. Пакеты данных идут в обоих направлениях, как продиктовано расписанием. Путем точного разбития этих периодов времени, подключенные устройства, могут осуществлять передачу и прием одновременно.

Самой большой проблемой для достижения полнодуплексного контроля над радиосвязью являются внутрисистемные помехи. Это помехи или шум более интенсивный, чем сам сигнал. Проще говоря, помехи в полнодуплексной системе возникают тогда, когда одна точка осуществляет передачу и прием одновременно, и также получает свою собственную передачу, следовательно, происходит само-интерференция.

Практически полнодуплексная беспроводная связь возможна в сферах исследований и научных сообществах. Во многом это достигается за счет устранения собственных помех на двух уровнях. Первый способ-инверсия самого шумового сигнала и тогда процесс шумоподавления дополнительно усиливается в цифровом виде.

Что насчет проводной сети?


Проводная часть локальной сети обменивается данными в режиме полного дуплекса с помощюю двух пар крученных проводов, образующих кабельное подключение Ethernet. Каждая пара предназначена для передачи и приема пакетов информации одновременно, поэтому нет столкновения данных и передача осуществляется без помех.

Прогресс в области WiFi-связи

В рамках протокола IEEE 802.11, были внесены изменения для достижения лучшего диапазона или лучшей пропускной способности, или то и другое. От своего основания в 1997 году до 2016, беспроводные стандарты были скорректированы от 802.11, 802.11b/a, 802.11g, 802.11n, 802.11ac, и наконец последний 802.22. Какими бы прогрессивными они ни стали, они по-прежнему принадлежат семье 802, который будет постоянно работать в режиме полудуплекса. Хотя были сделаны многие улучшения, особенно с включением технологии MIMO, работа в полудуплексном режиме снижает общую спектральную эффективность в два раза.

Интересно отметить, что MIMO поддерживаемая маршрутизаторами (со многими входами и многими выходами) рекламирует гораздо более высокие скорости передачи данных. Эти маршрутизаторы используют несколько антенн для передачи и приема одновременно нескольких потоков данных, которые могут увеличить общую скорость передачи. Это часто встречается и в маршрутизаторах 802.11 N, которые рекламируют скорости от 600 мегабит в секунду и выше. Однако, так как они работают в полудуплексном режиме, 50 процентов (300 мегабит в секунду) пропускная способность резервируется для передачи в то время как другие 50 процентов используют для получения.

Полнодуплексный WiFi в будущем

К полнодуплексной беспроводной связи растет все больший коммерческий интерес. Основная причина, состоит в том, что прогресс в полудуплексном FDD и TDD не насыщен. Усовершенствования программного обеспечения, модуляции достижений и улучшений технологии MIMO становятся все сложнее и сложнее. Поскольку все больше новых устройств имеют беспроводное подключение, необходимость повышения эффективности использования спектра в конечном итоге имеет первостепенное значение. Появление полнодуплексной беспроводной связи мгновенно удвоит спектральную эффективность.

Эти режимы определяют в какой степени возможны одновременные приемо- передачи.

Симплексная передача – только в одном направлении (радиовещание). Для передачи данных не применяется, т.к. нет возможности подтверждения правильности приема.

Полудуплексный обмен – передача возможна в двух направлениях, но только не одновременно, а поочередно. Применяется преимущественно в одном направлении, например, как при обмене факсами. Отличается простотой реализации, т.к. не нужно бороться с эхом и с проникновением шумов из обратного канала.

С другой стороны даже при преимущественной передаче в одном направлении требуется некоторое время при переключении для получения обратных подтверждений, отводимая на пересинхронизацию приемника и передатчика. Из-за этого скорость обмена снижается. Проблема снимается при использовании 4-хпроводной линии.

Дуплексная передача.

Возможен одновременный обмен в двух направлениях. Реализуется по-разному:

1. 4-хпроводная реализация – просто, но дорого.

2. 2-хпроводная реализация с частотным разделением каналов. Канал расщепляется на 2 логических подканала, каждый из которых используется для своего направления. В зависимости от того, равны подканалы ширине или нет, различают симметричный и асимметричный дуплекс. Последний используется, если передача идет преимущественно в одном направлении. В любом случае часть ширины канала уходит на зазор для ослабления наводок между ними.

Симметричный дуплекс с эхоподавлением.

Отраженный от АТС собственный выходной сигнал накладывается на входной, искажая его. Для обеспечения эхоподавления на этапе соединения модем с эхоподавлением посылает зондирующие сигналы и определяет параметры эха. Затем он как бы вычитает из входного сигнала эхо.

6. Шина pci

Шина PCI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) - шина соединения периферийных компонентов. Была анонсирована компанией Intel в июне 1992 года.

Эта шина занимает особое место в современной PC-архитектуре, являясь мостом между локальной шиной процессора и шиной ввода-вывода ISA/EISA или MCA. Эта шина разрабатывалась в расчете на Pentium-системы, но хорошо сочетается и с 486 процессорами, а также с не-Intel"овскими процессорами. Шина PCI является четко стандартизованной высокопроизводительной шиной расширения ввода-вывода. PCI – мультиплексная 32-разрядная шина. Существует также 64-разрядная версия. Частота шины 20-33 МГц. Стандарт PCI 2.1 допускает и частоту 66 МГц. Теоретическая максимальная скорость 132/264 Mбайт/с для 32/64 бит при 33 МГц, и 528 Мбайт/с при 66 МГц.

На одной шине PCI может быть не более четырех устройств (слотов). Мост шины PCI (PCI Bridge) - это аппаратные средства подключения шины PCI к другим шинам. Host Bridge - главный мост - используется для подключения PCI к системной шине (шине процессора или процессоров). Peer-to-Peer Bridge - одноранговый мост - используется для соединения двух шин PCI. Две и более шины PCI применяются в мощных серверных платформах - дополнительные шины PCI позволяют увеличить количество подключаемых устройств.

Автоконфигурирование устройств (выбор адресов, запросов прерывания) поддерживается средствами BIOS. Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода-вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода-вывода.

Шина PCI все обмены трактует как пакетные: каждый кадр начинается фазой адреса, за которой может следовать одна или несколько фаз данных. Количество фаз данных в пакете неопределенно, но ограничено таймером, определяющим максимальное время, в течении которого устройство может пользоваться шиной. Каждое устройство имеет собственный таймер, значение для которого задается при конфигурировании устройств шины.

В каждом обмене участвуют два устройства - инициатор обмена (Initiator) и целевое устройство (Target). Арбитражем запросов на использование шины занимается специальный функциональный узел, входящий в состав чипсета системной платы. Для согласования быстродействия устройств-участников обмена предусмотрены два сигнала готовности.

Шина имеет версии с питанием 5 В, 3.3 В. Также существует универсальная версия (с переключением линий +V I/O c 5 В на 3.3 В). Ключами являются пропущенные ряды контактов. Для 5 В-слота ключ расположен на месте контактов 50, 51; для 3 В - 12, 13; для универсального - два ключа: 12, 13 и 50, 51. Ключи не позволяют установить карту в слот с неподходящим напряжением питания.

В отличие от адаптеров остальных шин, компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно разделяет использование посадочного места адаптера с соседним ISA-слотом (Shared slot).

В современных системах произошел отказ от шин ISA, и шина PCI выходит на главные позиции. Некоторые фирмы для этой шины выпускают карты-прототипы, но, конечно же, доукомплектовать их периферийным адаптером или устройством собственной разработки гораздо сложнее, чем карту ISA. Здесь сказываются и более сложные протоколы, и более высокие частоты (8 МГц у шины ISA против 33 или 66 МГц у шины PCI). Также шина PCI обладает плохой помехоустойчивостью, поэтому для построения измерительных систем и промышленных компьютеров используется не всегда.

В настоящее время на новых системных платах используется PCI 2.2. Она совместима по используемым устройствам с PCI 2.1, отличительная ее особенность – возможность работы на нестандартных частотах - 75, 83, 100 МГц.