Что такое процессор? Особенности и характеристики. Процессор и его компоненты

19.09.2019 Звуковые устройства

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

  • Введение
  • Основные характеристики, мощность процессора
  • Как выбрать процессор
  • Некоторые советы по разгону процессоров
  • Заключение

Введение в понятие компьютерный процессор

Приветствуем вас друзья! Сегодня разберём с вами такой интересный и важный вопрос, что такое процессор в компьютере. Более правильно называть его центральный процессор (ЦП, также ещё его называют чип, камень, проц. и так далее).

Итак, процессор - это главная микросхема, которая занимается обработкой и управлением основными процессами в компьютере. Более наглядно процессор называют мозгом персонального компьютера (ПК), по аналогии с человеческим мозгом, который также выполняет основную работу по обработке и управлению данными у нас.

ЦП очень важен для ПК, именно от него зависит, насколько быстро тот будет работать, осуществлять многие повседневные задачи. Хотя, конечно, в компьютере ещё есть несколько важных компонентов (оперативная память, видеокарта), которые также влияют на скорость работы всей системы.

Чтобы ПК мог постоянно идти в ногу со временем в скорости и производительности работы, то время от времени в нём меняют ЦП и другие детали. Более подробно об этом ниже.

Характеристики и мощность ЦП

Основными характеристиками ЦП являются:

  • Тактовая частота

То есть это количество выполняемых операций в секунду. Сейчас этот параметр уже измеряется в миллиардах. К примеру, если наблюдали технические данные о каком-либо процессоре, то могли видеть у него значение 2,5 ГГц - это значит 2,5 миллиарда операций в секунду (но это всё равно очень мало по сравнению с человеческим мозгом, производительность которого, в тысячи раз больше).

Достаточно много. Самые мощные сейчас процессоры могут иметь тактовую частоту в 4 или 4,5 ГГц, что обычно требуется для мощных компьютерных игр и программ, для повседневной работы это лишнее.

  • Количество ядер

Ещё каких-то лет 10 назад почти никто и не помышлял о появлении двух и более ядерных ЦП. Фирмы производители наращивали тактовую частоту, пока не столкнулись с пределом это процесса. Тогда и появилось новое направление - создание двух и более ядер в чипе.

С одной стороны это очень хорошо. Поскольку даёт возможность процессору работать в два раза быстрее. Но с другой, без соответствующей программного сопровождения это реализовать нельзя. Всё дело в том, что любые детали компьютера не работают сами по себе.

Они способны функционировать только, если под это написаны специальные программные инструкции. Если таковых не будет, то толку от какой-либо новой технологии вообще не будет. Так и здесь, если на двухъядерном ЦП запустить выполняться программы, которые разработаны для одноядерных, то они и будут работать только под одно ядро, то есть увеличение скорости не произойдёт, второе ядро будет просто не задействовано.

Вот так примерно обстоят дела с появлением многочиповых ЦП. Хотя сейчас эта проблема уже решена. Почти все выходящие программы оптимизированы под работу на многоядерных процессорах (там, где это нужно). Само собой это игры, обработка видео, изображение, моделирование, разработка и так далее.

  • Энергопотребление

Важно понимать, что с повышением мощности растут и затраты на требуемую для функционирования энергию. Это очень важно, потому, что большое энергопотребление ведёт только к денежным тратам, увеличенному тепловыделению. Поэтому разработчики постоянно ведут работу по снижению энергопотребления.

  • Разрядность

Если коротко то - это поддержка процессором той или иной архитектуры работы. Обычно это 32-х или 64-х битная. В 64-х битной кроются большие возможности, сейчас она повсеместно входит в обиход. Все современные ЦП поддерживают 64 бита, поэтому это вопрос однозначный и ошибиться в нём нельзя. Более подробно разобраться в этом вопросе можно в статье, какая разница между 32-х и 64-х битной разрядностью операционной системы .

Как выбрать процессор

Вообще их присутствует большое многообразие на любой вкус и потребности. Но при несильно требовательных запросах его выбрать несложно. Для начал стоит определиться, для каких целей будет использоваться компьютер, если только для работы и мелких развлечений (маленькие игры, просмотр фильмов, музыка, сёрфинг в интернете), то здесь всё просто - вам подойдёт самый недорогой современный чип.

Если занимаетесь серьёзной сложной работой, требующей мощного сбалансированного компьютера, то здесь немного сложнее. Нужно обратить внимание на такие моменты:

  1. Многоядерность - 4 и более ядер
  2. Высокая тактовая частота - 2,5 и выше гигагерц
  3. Кэш третьего уровня не менее 6 мегабайт

Соответствуя, таким основным рекомендациям можно хоть как-то рассчитывать на хороший и производительный экземпляр. Но правильнее будет, выбрать модель и посмотреть информацию о ней в интернете, к примеру, тесты производительности, отзывы и др.

  • Он должен подходить по разъёму в материнскую плату, это нужно на 100% уточнить до покупки. На рынке присутствуют 2 основные производителя ЦП - это Intel и AMD. Каждая из этих фирм выпускает различные линейки ЦП с определённым разъёмом, который нужно знать и уже под него подбирать материнскую плату, то есть плату, куда он впоследствии устанавливается для постоянной работы.

  • Процессор хрупкая деталь, поэтому ни в коем случае не роняем его, не стучим по нему, не бросаем в сумку.
  • После его установки, на него обязательно нужно нанести термопасту (теплопроводящая паста), что это такое читаем в статье чистка от пыли и замена её в ноутбуке , логика одинаковая. Если забыть про нанесение термопасты, то ЦП будет перегреваться и нестабильно работать, в конечном счёте, вообще сгорит. Более того, высохшая термопаста и пыль одни из основных причин поломки ноутбуков и компьютеров.

  • Важно подобрать правильное охлаждение для ЦП. Дело в том, что процессоры разных серий могут греться по-разному. Соответственно и кулер (это вентилятор с радиатором для охлаждения) на него выбираются индивидуально. Это несложно, если знать его тепловыделение, с таким же значением или выше нужно покупать и кулер.

Вообще разгон - это самостоятельное увеличение его технических характеристик, обычно это повышение тактовой частоты, напряжения или разблокировка ядер (если присутствует такая возможность).

Крайне не рекомендуем его делать, если это не разрешено заводом производителем. Если вопреки этому будете действовать, то можете просто испортить его. Другое дело, когда сам производитель разрешает это делать, более того вывел специальную функцию для этого, иногда нужно просто нажать одну кнопку или выбрать соответствующее значение.

В таком случае да, если считаете нужным повысить характеристики ЦП, то это можно сделать. Но опять же не забываем про охлаждение и термопасту. Если не удостовериться в этих моментах, то опять же можно испортить ЦП.

Заключение

По представленной выше информации, надеемся можно сформировать общее представление о том, что такое процессор, каковы его характеристики и как его правильно использовать.

Прекрасно знают основные составляющие компьютера, но мало кто понимает, из чего состоит процессор. А между тем это главное устройство системы, которое выполняет арифметические и логические операции. Основная функция процессора состоит в получении информации, ее обработке и отдаче конечного результата. Звучит все просто, но на самом деле процесс этот сложный.

Из чего состоит процессор

ЦП ‒ это миниатюрная кремниевая пластина прямоугольной формы, которая содержит миллионы транзисторов (полупроводников). Именно они реализуют все функции, которые выполняет процессор.

Почти все современные процессоры состоят из следующих компонентов:

  1. Несколько ядер (редко 2, чаще 4 или 8), которые выполняют все функции. По сути, ядро представляет собой отдельный миниатюрный процессор. Несколько интегрированных в основной чип ядер параллельно работают над задачами, что ускоряет процесс обработки данных. Однако не всегда большее количество ядер означает более быструю работу чипа.
  2. Несколько уровней памяти КЭШ (2 или 3), благодаря чему время взаимодействия ОЗУ и процессора сокращается. Если информация находится в КЭШе, то время доступа к ней минимизировано. Следовательно, чем большим будет объем КЭШа, тем больше информации в него поместится и тем быстрее будет сам процессор.
  3. Контроллер ОЗУ и системной шины.
  4. Регистры ‒ ячейки памяти, где хранятся обрабатываемые данные. Они всегда имеют ограниченный размер (8, 16 или 32 бит).
  5. Сопроцессор. Отдельное ядро, которое предназначается для выполнения операций определенного типа. Чаще всего в виде сопроцессора выступает графическое ядро (видеокарта).
  6. Адресная шина, которая связывает чип со всеми подключенными к материнской плате устройствами.
  7. Шина данных - для связи процессора с оперативной памятью. По сути, шина представляет собой набор проводников, посредством которых передается или принимается электрический сигнал. И чем больше будет проводников, тем лучше.
  8. Шина синхронизации - позволяет контролировать такты и частоту работы процессора.
  9. Шина перезапуска - обнуляет состояние чипа.

Все эти элементы принимают участие в работе. Однако самым главным среди них, безусловно, является именно ядро. Все остальные указанные составляющие лишь помогают ему выполнять основную задачу. Теперь, когда вы понимаете, из чего состоит процессор, можно более детально рассмотреть его основной компонент.

Ядра

Говоря о том, из чего состоит центральный процессор, в первую очередь нужно упомянуть ядра, так как именно они представляют собой основные его части. Ядра включают в себя функциональные блоки, выполняющие арифметические или логические операции. В частности, можно выделить:

  1. Блок выборки, декодирования и выполнения инструкций.
  2. Блок сохранения результатов.
  3. Блок счетчика команд и т.д.

Как вы поняли, каждый из них выполняет определенную задачу. Например, блок выборки инструкций считывает их по указанному в счетчике команд адресу. В свою очередь, блоки декодирования определяют, что именно надо сделать процессору. В совокупности работа всех этих блоков и позволяет добиться выполнения указанной пользователем задачи.

Задача ядер

Отметим, что ядра могут выполнять только математические расчеты и операции сравнения, а также перемещать данные между ячейками ОЗУ. Впрочем, этого хватает, чтобы пользователи могли играть в игры на компьютере, смотреть фильмы, просматривать веб-страницы.

По сути, любая компьютерная программа состоит из простых команд: сложить, умножить, переместить, поделить, перейти к инструкции при выполнении условия. Конечно, это лишь примитивные команды, однако их объединение между собой позволяет создать сложную функцию.

Регистры

Из чего состоит процессор еще, кроме ядер? Регистры - второй важный его компонент. Как вы уже знаете, это быстрые ячейки памяти, где находятся обрабатываемые данные. Они бывают разными:

  1. A, B, C - используются для хранения информации во время обработки. Их всего три, но этого достаточно.
  2. EIP - в этом регистре хранится адрес следующей в очереди инструкции.
  3. ESP - адрес данных в ОЗУ.
  4. Z - здесь находится результат последней операции сравнения.

Этими регистрами процессор не ограничивается. Есть и другие, однако указанные выше являются самыми главными - именно ими чаще всего пользуется чип для обработки данных во время выполнения той или иной программы.

Заключение

Теперь вы знаете, из чего состоит процессор и какие его модули являются основными. Подобный состав чипов не является постоянным, так как они постепенно совершенствуются, добавляются новые модули, усовершенствуются старые. Однако сегодня то, из чего состоит процессор, его назначение и функционал являются именно такими, как описано выше.

Описанный выше состав и приблизительный принцип работы систем процессора упрощены до минимума. На самом деле весь процесс является более сложным, но для его понимания необходимо получать соответствующее образование.

Описание и назначение процессоров

Определение 1

Центральный процессор (ЦП) – основной компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет процессом вычислений и координирует работу всех устройств ПК.

Чем мощнее процессор, тем выше быстродействие ПК.

Замечание

Центральный процессор часто называют просто процессором, ЦПУ (Центральное Процессорное Устройство) или CPU (Central Processing Unit), реже – кристаллом, камнем, хост-процессором.

Современные процессоры являются микропроцессорами.

Микропроцессор имеет вид интегральной схемы – тонкой пластинки из кристаллического кремния прямоугольной формы площадью в несколько квадратных миллиметров, на которой размещены схемы с миллиардами транзисторов и каналов для прохождения сигналов. Кристалл-пластинка помещен в пластмассовый или керамический корпус и соединен золотыми проводками с металлическими штырьками для подсоединения к системной плате ПК.

Рисунок 1. Микропроцессор Intel 4004 (1971 г.)

Рисунок 2. Микропроцессор Intel Pentium IV (2001 г.). Слева – вид сверху, справа – вид снизу

ЦП предназначен для автоматического выполнения программы.

Устройство процессора

Основными компонентами ЦП являются:

  • арифметико-логическое устройство (АЛУ) выполняет основные математические и логические операции;
  • управляющее устройство (УУ), от которого зависит согласованность работы компонентов ЦП и его связь с другими устройствами;
  • шины данных и адресные шины ;
  • регистры , в которых временно хранится текущая команда, исходные, промежуточные и конечные данные (результаты вычислений АЛУ);
  • счетчики команд ;
  • кэш-память хранит часто используемые данные и команды. Обращение в кэш-память гораздо быстрее, чем в оперативную память, поэтому, чем она больше, тем выше быстродействие ЦП.

Рисунок 3. Упрощенная схема процессора

Принципы работы процессора

ЦП работает под управлением программы, которая находится в оперативной памяти.

АЛУ получает данные и выполняет указанную операцию, записывая результат в один из свободных регистров.

Текущая команда находится в специальном регистре команд. При работе с текущей командой значение так называемого счетчика команд увеличивается, который затем указывает на следующую команду (исключением может быть только команда перехода).

Команда состоит из записи операции (которую нужно выполнить), адресов ячеек исходных данных и результата. По указанным в команде адресам берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала помещается в регистр, а уж потом перемещается по своему адресу, указанному в команде.

Характеристики процессора

Тактовая частота указывает частоту, на которой работает ЦП. За $1$ такт выполняется несколько операций. Чем выше частота, тем выше быстродействие ПК. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): $1$ ГГц = $1$ миллиард тактов в секунду.

Для повышения производительности ЦП стали использовать несколько ядер, каждое из которых фактически является отдельным процессором. Чем больше ядер, тем выше производительность ПК.

Процессор связан с другими устройствами (например, с оперативной память ю) через шины данных, адреса и управления. Разрядность шин кратна 8 (т.к. имеем дело с байтами) и отличается для разных моделей, а также различна для шины данных и шины адреса.

Разрядность шины данных указывает на количество информации (в байтах), которое можно передать за $1$ раз (за $1$ такт). От разрядности адресной шины зависит максимальный объем оперативной памяти, с которым может работать ЦП.

От частоты системной шины зависит количество данных, которые передаются за отрезок времени. Для современных ПК за $1$ такт можно передать несколько бит. Важна также и пропускная способность шины, равная частоте системной шины, умноженной на количество бит, которые можно передать за $1$. Если частота системной шины равна $100$ Мгц, а за $1$ такт передается $2$ бита, то пропускная способность равна $200$ Мбит/сек.

Пропускная способность современных ПК исчисляется в гигабитах (или десятках гигабит) в секунду. Чем выше этот показатель, тем лучше. На производительность ЦП влияет также объем кэш-памяти.

Данные для работы ЦП поступают из оперативной памяти, но т.к. память медленнее ЦП, то он может часто простаивать. Во избежание этого между ЦП и оперативной памятью располагают кэш-память, которая быстрее оперативной. Она работает как буфер. Данные из оперативной памяти посылаются в кэш, а затем в ЦП. Когда ЦП требует следующее данное, то при наличии его в кэш-памяти оно берется из него, иначе происходит обращение к оперативной памяти. Если в программе выполняется последовательно одна команда за другой, то при выполнении одной команды коды следующих команд загружаются из оперативной памяти в кэш. Это сильно ускоряет работу, т.к. ожидание ЦП сокращается.

Замечание 1

Существует кэш-память трех видов:

  • Кэш-память $1$-го уровня самая быстрая, находится в ядре ЦП, поэтому имеет небольшие размеры ($8–128$ Кб).
  • Кэш-память $2$-го уровня находится в ЦП, но не в ядре. Она быстрее оперативной памяти, но медленнее кэш-памяти $1$-го уровня. Размер от $128$ Кбайт до нескольких Мбайт.
  • Кэш-память $3$-го уровня быстрее оперативной памяти, но медленнее кэш-памяти $2$-го уровня.

От объема этих видов памяти зависит скорость работы ЦП и соответственно компьютера.

ЦП может поддерживать работу только определенного вида оперативной памяти: $DDR$, $DDR2$ или $DDR3$. Чем быстрее работает оперативная память, тем выше производительность работы ЦП.

Следующая характеристика – сокет (разъем), в который вставляется ЦП. Если ЦП предназначен для определенного вида сокета, то его нельзя установить в другой. Между тем, на материнской плате находится только один сокет для ЦП и он должен соответствовать типу этого процессора.

Типы процессоров

Основной компанией, выпускающей ЦП для ПК, является компания Intel. Первым процессором для ПК был процессор $8086$. Следующей моделью была $80286$, далее $80386$, со временем цифру $80$ стали опускать и ЦП стали называть тремя цифрами: $286$, $386$ и т.д. Поколение процессоров часто называют семейством $x86$. Выпускаются и другие модели процессоров, например, семейства Alpha, Power PC и др. Компаниями-производителями ЦП также являются AMD, Cyrix, IBM, Texas Instruments.

В названии процессора часто можно встретить символы $X2$, $X3$, $X4$, что означает количество ядер. Например в названии Phenom $X3$ $8600$ символы $X3$ указывают на наличие трех ядер.

Итак, основными типами ЦП являются $8086$, $80286$, $80386$, $80486$, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron является урезанным вариантом процессора Pentium. После названия обычно указывается тактовая частота ЦП. Например, Celeron $450$ обозначает тип ЦП Celeron и его тактовую частоту – $450$ МГц.

Процессор нужно устанавливать на материнскую плату с соответствующей процессору частотой системной шины.

В последних моделях ЦП реализован механизм защиты от перегрева, т.е. ЦП при повышении температуры выше критической переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.

Определение 2

Если в вычислительной системе несколько параллельно работающих процессоров, то такие системы называются многопроцессорными .

Центральный процессор является ключевым компонентом любого персонального компьютера. В этом материале мы расскажем об основных характеристиках современных процессоров, их технологических особенностях и базовых функциональных возможностях.

Введение

Любое компьютерное устройство, будь то ноутбук, настольный ПК или планшет состоит из нескольких важных компонентов, которые отвечают за его функциональные возможности и работоспособность в целом. Но, пожалуй, самым важным из них является центральный процессор (ЦП, ЦПУ или CPU) - устройство, отвечающее за все основные вычисления и выполняющее машинные инструкции (код программ). Недаром, именно процессор, считается мозгом компьютера и главной частью его аппаратного обеспечения.

Как правило, выбирая себе компьютер, мы в первую очередь обращаем внимание на то, какой именно процессор находится в его основе, так как от его производительности будут напрямую зависеть возможности и функциональность вашего будущего ПК. Именно поэтому, человек, который владеет информацией о современных производителях процессоров и тенденциях развития этого рынка, сможет грамотно определить не только возможности того или иного компьютерного устройства, но и оценить перспективность будущей покупки нового ПК или обновления старого.

Совершенно очевидно, что процессоры, установленные во всевозможных компьютерных и электронных устройствах, отличаются между собой не только своей производительностью, но и конструктивными особенностями, а так же принципами работы. В рамках этого цикла мы с вами будем знакомиться с процессорами, построенными на базе архитектуры x86 , которые лежат в основе большинства современных настольных компьютеров, ноутбуков и нетбуков, а так же некоторых планшетов.

Наверняка, у многих читателей, особенно тех, кто только начинает знакомиться с компьютером, существует определенное предубеждение, что разбираться во всех этих «процессорных премудростях» удел опытных пользователей, потому что это очень сложно. Но так ли все проблематично на самом деле?

С одной стороны, конечно процессор - это очень сложное устройство и досконально изучить все его технические характеристики действительно непросто. Еще больше усугубляет ситуацию тот факт, что количество моделей ЦП, которые вы сможете сейчас найти на современном рынке очень велико, так как одновременно в продаже присутствуют сразу несколько поколений чипов. Но с другой стороны, процессоры имеют всего несколько ключевых характеристик, разобравшись в которых, рядовой пользователь сможет самостоятельно оценить возможности той или иной модели процессора и сделать правильный выбор, не запутавшись во всем модельном разнообразии.

Основные характеристики процессоров

Архитектура x86 впервые была реализована в собственных процессорах компанией Intel в конце 70-ых годов, а в ее основу были положены вычисления со сложным набором команд (CISC). Свое название эта архитектура получила от последних двух цифр, которыми заканчивались кодовые наименования моделей ранних изделий Intel - пользователи со стажем наверняка помнят еще 286-е (80286), 386-е (80386) и 486-е (80486) «персоналки», являвшиеся мечтой любого компьютерщика конца 80-ых, начала 90-ых годов.

На сегодняшний день архитектура x86 была также реализована и в процессорах компаний AMD, VIA, SiS, Cyrix и многих других.

Основными характеристиками процессоров, по которым их принято разделять на современном рынке, являются:

  • фирма производитель
  • серия
  • количество вычислительных ядер
  • тип установочного разъема (сокет)
  • тактовая частота.

Производитель (бренд) . На сегодняшний день все центральные процессоры для настольных компьютеров и ноутбуков разделены на два больших лагеря под марками Intel и AMD, которые вместе покрывают около 92% общего мирового рынка микропроцессоров. Несмотря на то, что из них доля Intelсоставляет примерно 80%, эти две компании уже много лет с переменным успехом конкурируют между собой, пытаясь завлечь покупателей под свои знамена.

Серия - является одной из ключевых характеристик центрального процессора. Как правило, оба производителя разделяют свою продукцию на несколько групп по их быстродействию, ориентации на разные категории пользователей и различные сегменты рынка. Каждая из таких групп составляет семейство или серию со своим отличительным названием, по которому можно понять не только ценовую нишу продукта, но и в общем, его функциональные возможности.

На сегодняшний день в основе продукции компании Intelлежат пять основных семейств -Pentium (Dual-Core) , Celeron (Dual-Core) , Core i3, Core i5 и Core i7 . Первые три нацелены на бюджетные домашние и офисные решения, два последних лежат в основе производительных систем.

Процессор Intel Core i7

Несколько особняком от основных семейств держится линейка чипов Atom , отличающаяся от остальных низким энергопотреблением и невысокой стоимостью. Эти процессоры предназначены для установки в бюджетных системах, где не требуется высокая производительность, но необходимо малое потребление энергии. К таковым относятся нетбуки, неттопы, планшетные ПК и коммуникаторы.

Нельзя не упомянуть и еще об одном семействе процессоров компании из Санта-Клара - Core 2 . Не смотря на то, что оно уже не выпускается, и найти его в продаже можно лишь на различных «барахолках», до сих пор, у пользователей это семейство пользуется заслуженной популярностью, а многие нынешние домашние компьютеры оснащены процессорами именно этой серии.

Компания AMD, почитателям своей продукции, предлагает процессоры серий Athlon II , Phenom II , A-Series и FX-Series . Путь двух первых семейств подходит к логическому завершению, последние же два только набирают обороты. Кое-где еще можно встретить в продаже самые бюджетные процессоры Sempron , хотя их дни практически сочтены.

Процессор AMD FX-Series

Как и Intel, AMD имеет тоже свою «мобильную» серию под названием E- series , микропроцессоры которой характеризуются пониженным энергопотреблением и предназначены для установки в недорогие настольные и портативные ПК.

Количество вычислительных ядер . Еще в прошлом десятилетии разделение процессоров по количеству ядер не было вовсе, так как все они были одноядерными. Но времена меняются, и сегодня одноядерные ЦП можно назвать анахронизмом, а на смену им пришли многоядерные собратья. Самыми распространёнными из них являются двух и четырехъядерные чипы. Несколько меньше распространены процессоры с тремя, шестью и восемью вычислительными ядрами.

Наличие в процессоре сразу нескольких ядер призвано увеличить его производительность, и как вы понимаете, чем их больше, тем она выше. Правда при работе со старым, неоптимизированным под многоядерные вычисления, программным обеспечением это правило может и не работать.

Тип разъема . Любой процессор устанавливается в системную плату, на которой для этого существует специальный разъем (гнездо) или по-другому - сокет (Socket). Процессоры разных производителей, серий и поколений устанавливаются в разные типы разъемов. Сейчас, для настольных ПК, таковых семь - четыре для чипов Intel и три для AMD.

Основным и самым распространенным сокетом для центральных процессоров Intel считается LGA 1155. Самые производительные и продвинутые решения этой компании устанавливаются в разъем LGA 2011. Остальные два типа разъемов - LGA 775 и LGA 1156 доживают свои последние дни, так как выпуск процессоров под такие типы сокета практически прекращен.

Среди изделий AMD, на сегодняшний день самым используемым типом разъема можно назвать Socket AM3. Как правило, в него устанавливаются большинство бюджетных и самых ходовых продуктов компании. Правда эта ситуация в ближайшее время скорее всего измениться, так как все новейшие процессоры и производительные решения имеют разъемы Socket AM3+ и Socket FM1.

Кстати процессоры Intelи AMDможно очень просто отличить по одному характерному признаку, который вы возможно уже заметили, смотря на фотографии. Изделия компании AMD имеют на задней части множество штырьков-контактов, с помощью которых они подключаются к системной плате (вставляются в разъем). Intel же использует принципиально иное решение, так как контактные ножки находятся не на самом процессоре, в внутри разъема материнской платы.

Рассматривать разъемы здесь для мобильных решений мы не будем, так как это не имеет никакого практического смысла. Ведь тип сокета для пользователя важен только в том случае, если вы планируете самостоятельно произвести замену (апгрейд) процессора в вашем компьютере. В портативных же устройствах это сделать довольно затруднительно, да и сами мобильные версии процессоров купить в рознице практически невозможно.

Тактовая частота - характеристика определяющая производительность процессора, измеряющаяся в мегагерцах (МГц) или гигагерцах (ГГц) и показывающая то количество операций, которое он может проделать в секунду. Правда, проводить сравнение производительности разных моделей процессоров только по показателю их тактовой частоты в корне неверно.

Дело в том, что для выполнения одной операции, разным чипам может потребоваться разное количество тактов. Кроме того, современные системы при вычислениях используют конвейерную и параллельную обработки, и могут за один такт выполнить сразу несколько операций. Все это приводит к тому, что разные модели процессоров, имеющие одинаковую тактовую частоту, могут показывать совершенно различную производительность.

Сводная таблица семейств процессоров для настольных ПК

Технологический процесс (технология производства)

При производстве микросхем и в частности кристаллов микропроцессоров в промышленных условиях используется фотолитография - метод, которым с помощью литографического оборудования на тонкую кремневую подложку наносятся проводники, изоляторы и полупроводники, которые и формируют ядро процессора. В свою очередь используемое литографическое оборудование имеет определенную разрешающую способность, которая и определяет название применяемого технологического процесса.

Intel

Чем же так важен технологический процесс, с помощью которого изготавливаются процессоры? Постоянное совершенствование технологий позволяет пропорционально уменьшать размеры полупроводниковых структур, что способствует уменьшению размера процессорных ядер и их энергопотребления, а так же снижению их стоимости. В свою очередь снижение энергопотребления уменьшает тепловыделение процессора, что позволяет увеличивать их тактовую частоту, а значит и вычислительную мощность. Так же небольшое тепловыделение позволяет применять более производительные решения в мобильных компьютерах (ноутбуки, нетбуки, планшеты).

Кремниевая пластина с чипами процессоров AMD

Первый процессор Intel с архитектурой x86, до сих пор являющейся основной для всех современных ЦП, был произведен в конце 70-ых годов с помощью техпроцесса равному 3 мкм (микрометра). К началу 2000-ых годов практически все ведущие производители микросхем, включая компании AMD и Intel, освоили 0,13 мкм или 130 нм - технологический процесс. Большинство современных процессоров изготавливаются по 32 нм - техпроцессу, а с середины 2012 года и по 22 нанометровой технологии.

Переход на более тонкий техпроцесс всегда является значимым событием для производителей микропроцессоров. Ведь это, как было отмечено ранее, приводит к снижению стоимости производства чипов и улучшению их ключевых характеристик, а значит, делает выпускаемую продукцию разработчика более конкурентоспособной на рынке.

Энергопотребление и тепловыделение

На ранней стадии своего развития микропроцессоры потребляли совсем небольшое количество энергии. Но с ростом тактовых частот и количества транзисторов в ядре чипов, этот показатель стал стремительно расти. Практически не учитываемый на первых порах фактор энергопотребления на сегодняшний день имеет колоссальное влияние на эволюцию процессоров.

Чем выше энергопотребление процессора, тем больше он выделяет тепла, которое может привести к перегреву и выходу из строя, как самого процессора, так и окружающих его микросхем. Для отведения тепла используются специальные системы охлаждения, размер которых, напрямую зависит от количества выделяемого тепла процессором.

В начале 2000-ых годов тепловыделения некоторых процессоров выросло выше 150 Вт, а для их охлаждения приходилось использовать массивные и шумные вентиляторы. Более того, средняя мощность блоков питания того времени составляла 300 Вт, а это значит что более половины ее должно было уходить на обслуживание «прожорливого» процессора.

Именно тогда стало понятно, что дальнейшее наращивание вычислительной мощности процессоров невозможно без снижения их энергопотребления. Разработчики были вынуждены кардинально пересмотреть процессорные архитектуры и начать активно внедрять технологии, способствующие снизить тепловыделение.

Процессоры, работающие на сверхвысоких тактовых частотах, приходится остужать вот такими гигантскими системами охлаждения.

Для оценки тепловыделения процессоров была введена величина, характеризующая требования к производительности систем охлаждения и получившая название TDP . TDP показывает на отвод какого количества тепла должна быть рассчитана та или иная система охлаждения при использовании с определенной моделью процессора. Например, TDP процессоров для мобильных ПК должно быть менее 45 Вт, так как использование в ноутбуках или нетбуках больших и тяжелых систем охлаждения невозможно.

На сегодняшний день, в эру расцвета портативных устройств (ноутбуки, неттопы, планшеты), разработчикам удалось добиться колоссальных результатов на поприще снижения энергопотребления. Этому поспособствовали: переход на более тонкий технологический процесс при производстве кристаллов, внедрение новых материалов для снижения токов утечки, изменение компоновки процессоров, применение всевозможных датчиков и интеллектуальных систем, отслеживающих температуру и напряжения, а так же внедрение других технологий энергосбережения. Все эти меры позволяют разработчикам продолжать наращивать вычислительные мощности процессоров и использовать более производительные решения в компактных устройствах.

На практике, учитывать тепловые характеристики процессора при покупке стоит, если вы хотите собрать бесшумную компактную систему, или например, желаете что бы будущий ноутбук работал как можно дольше от аккумулятора.

Архитектура процессоров и кодовые имена

В основе каждого процессора лежит так называемая процессорная архитектура - набор качеств и свойств, присущий целому семейству микрочипов. Архитектура напрямую определяет внутреннюю конструкцию и организацию процессоров.

По сложившейся традиции, компании Intelи AMD дают своим различным процессорным архитектурам кодовые имена. Это более точно позволяет систематизировать современные процессорные решения. Например, процессоры одного семейства с одинаковой тактовой частотой и количеством ядер могут быть изготовлены с применением разного технологического процесса, а значит иметь разную архитектуру и производительность. Так же применение звучных имен в названиях архитектур дает возможность производителям более эффектно презентовать, нам пользователям, свои новые разработки.

Разработки Intel носят географические названия мест (гор, рек, городов и т.д.), находящихся недалеко от мест размещения ее производственных структур, ответственных за разработку соответствующей архитектуры. Например, первые процессоры Core 2 Duo были построены на архитектуре Conroe (Конрой), которая получила свое название в честь города, расположенного в американском штате Техас.

Компания AMD какой-либо четкой тенденции формирования имен для своих разработок не имеет. От поколения к поколению тематическая направленность может изменяться. Например, новые процессоры компании носят кодовые имена Liano и Trinity.

Многоуровневый кэш

В процессе выполнения вычислений, микропроцессору необходимо постоянно обращаться к памяти для чтения или записи данных. В современных компьютерах функцию основного хранения данных и взаимодействия с процессором выполняет оперативная память.

Не смотря на высокую скорость обмена данными между двумя этими компонентами, процессору часто приходиться простаивать, ожидая запрошенную у памяти информацию. В свою очередь это приводит к снижению скорости вычислений и общей производительности системы.

Для улучшения этой ситуации, все современные процессоры имеют кэш - небольшой промежуточный буфер памяти с очень быстрым доступом, использующейся для хранения наиболее часто запрашиваемых данных. Когда процессору становятся необходимы какие-то данные, он сначала ищет их копии в кэше, так как оттуда выборка необходимой информации произойдет гораздо быстрее, чем из оперативной памяти.

Большинство микропроцессоров для современных компьютеров имеют многоуровневый кэш, состоящий из двух или трех независимых буферов памяти, каждый из которых отвечает за ускорения определенных процессов. Например, кэш первого уровня (L1) может отвечать за ускорение загрузки машинных инструкций, второго (L2) - ускорение записи и чтения данных, а третьего (L3) - ускорение трансляции виртуальных адресов в физические.

Одной из самых основных проблем, стоящих перед разработчиками, является нахождение оптимальных размеров кэша. С одной стороны, большой кэш может содержать больше данных, а значит процент того, что процессор найдет среди них нужные - выше. С другой стороны, чем больше размер кэша, тем больше задержка при выборке данных из него.

Поэтому, кэши разных уровней имеют разный размер, при этом кэш первого уровня - самый маленький, но и самый быстрый, а третьего - самый большой, но и самый медленный. Поиск данных в них происходит по принципу от меньшего к большему. То есть процессор сначала пытается найти необходимую ему информацию в кэше L1, затем в L2 и потом в L3 (при его наличии). При отсутствии нужных данных во всех буферах происходит обращение к оперативной памяти.

В целом, эффективность работы кэша, особенно 3-его уровня, зависит от характера обращения программ к памяти и архитектуры процессора. Например, в некоторых приложениях наличие кэша L3 может принести 20%-ый прирост производительности, а в некоторых не сказаться вовсе. Поэтому, на практике вряд ли стоит руководствоваться характеристиками многоуровневого кэша, при выборе процессора для своего компьютера.

Встроенная графика

С развитием технологий производства и как следствие уменьшением размеров чипов, у производителей появилась возможность размещать внутри процессора дополнительные микросхемы. Первой из таковых, стало графическое ядро, отвечающее за вывод изображения на монитор.

Такое решение позволяет снизить общую стоимость компьютера, так как в этом случае нет необходимости использовать отельную видеокарту. Очевидно, что гибридные процессоры ориентированы на использование в бюджетных системах и корпоративном секторе, где производительность графической составляющей вторична.

Первый пример интеграции видеопроцессора в «нормальный» ЦП продемонстрировала компания Intel в начале 2010 года. Конечно, никакой революции это не принесло, так как до этого момента графика уже давно и успешно интегрировалась в чипсеты материнских плат.

Когда-то разница по функционалу между интегрированной и дискретной графикой была принципиальной. На сегодняшний же день можно говорить лишь о разной производительности этих решений, так как встроенные видеочипы способны выводить изображения на несколько мониторов в любых доступных разрешениях, выполнять 3D-ускорение и аппаратное кодирование видео. По сути, интегрированные решения по своей производительности и возможностям можно сравнить с младшими моделями видеокарт.

Компания Intel интегрирует в свои процессоры графическое ядро под незатейливым названием IntelHDGraphics собственной разработки. При этом процессоры Core 2, Celeron и старшие модели Core i7 встроенных графических ядер не имеют.

AMD, осуществив слияние в 2006 году с гигантом по производству видеокарт, канадской компанией ATI, встраивает в свои решения видеочипы семейства Radeon HD. Более того, некоторые новые процессоры компании представляют собой объединение процессорных ядер x86 и графических Radeonна одном кристалле. Единый элемент, созданный путем слияния центрального (CPU) и графического (GPU) процессоров получил название APU, Accelerated Processor Unit (ускоренный процессорный элемент). Именно так (APU) теперь и называют процессоры A и E-серий.

В общем, интегрированные графические решения от компании AMDявляются более производительными, чем Intel HD и выглядят предпочтительнее в игровых приложениях.

Режим Turbo

Многие современные процессоры оснащены технологией, позволяющей им в некоторых случаях автоматически увеличивать тактовую частоту выше номинальной, что приводит к увеличению производительности приложений. Фактически данная технология является «саморазгоном» процессора. Время работы системы в режиме Turbo зависит от условий эксплуатации, рабочей нагрузки и конструктивных особенностей платформы.

Компания Intel в своих процессорах использует собственную технологию интеллектуального разгона под названием Turbo Boost. Используется она в производительных семействах Core i5 и Core i7.

Отслеживая параметры, связанные с нагрузкой на ЦПУ (напряжение и сила тока, температура, мощность), встроенная система управления повышает тактовую частоту ядер в случае, когда максимальный тепловой пакет (TDP) процессора еще не достигнут. При наличии незагруженных ядер они отключаются и освобождают свой потенциал для тех, которые используются приложениями. Чем меньше ядер задействовано в вычислениях, тем выше поднимается тактовая частота чипов, участвующих в вычислениях. Для однопоточных приложений ускорение может составлять 667 МГц.

AMD так же имеет свою технологию динамического разгона наиболее нагруженных ядер и применяет ее только в своих 6 и 8-ядерных чипах, к котором относятся серии Phenom II X6 и FX. Называется она Turbo Core и способна работать только в том случае, если в процессе вычислений количество загруженных ядер составляет меньше половины от их общего числа. То есть в случае 6-ядерных процессоров, число неактивных ядер должно быть не менее трех, а 8-ядерных - четырех. В отличие от Intel Turbo Boost, в этой технологии на прирост частоты не влияет количество свободных ядер и он всегда одинаков. Его величина зависит от модели процессора и колеблется от 300 до 600 МГц.

Заключение

В заключении давайте попробуем применить практически полученные знания с пользой. Например, в одном популярном магазине компьютерной электроники продаются два процессора Intel Core i5 cодинаковой тактовой частотой 2.8 ГГц. Давайте посмотрим на их описания, взятые с сайта магазина, и попробуем разобраться в их отличиях.


Если внимательно посмотреть на скриншоты, то несмотря на то, что оба процессора относятся к одному семейству общего у них не так уж много: тактовая частота, да количество ядер. Остальные характеристика рознятся, но первое на что стоит обратить внимание - это типы разъемов, в которые устанавливаются оба процессора.

Intel Core i5 760 имеет разъем Socket 1156, а значит относится к устаревшему поколению процессоров. Покупка его будет оправдана только в том случае, если у вас уже стоит в компьютере материнская плата с таким гнездом, и менять ее вы не хотите.

Более новый Core i5 2300 произведен уже по более тонкому техпроцессу (32 нм против 45 нм), а значит, имеет и более совершенную архитектуру. Несмотря на несколько меньший L3 кэш и «саморазгон» этот процессор наверняка не уступит в производительности своему предшественнику, а наличие встроенной графики позволит обойтись без приобретения отдельной видеокарты.

Несмотря на то, что у обоих процессоров тепловыделение указано одинаковым (95 Вт), Core i5 2300 в равных условиях будет холоднее своего предшественника, так как мы уже знаем, что более современный технологический процесс обеспечивает меньшее энергопотребление. В свою очередь это увеличивает его разгонный потенциал, что не может не радовать компьютерных энтузиастов.

А теперь давайте рассмотрим пример на базе процессоров AMD. Здесь мы выбрали специально процессоры из двух разных семейств - Athlon II X4 и Phenom II X4. По идее линейка Phenom является более производительной, чем Athlon, но давайте посмотрим на их характеристики и решим, все ли так однозначно.

Из характеристик видно, что оба процессора имеют одинаковые тактовую частоту и количество вычислительных ядер, практически идентичное тепловыделение, а так же у обоих отсутствует встроенное графическое ядро.

Первое различие, которое сразу бросается в глаза - процессоры устанавливаются в разные разъемы. Не смотря на то, что оба они (разъемы) на данный момент активно поддерживаются производителями системных плат, из этой пары Socket FM1 выглядит несколько предпочтительнее с точки зрения будущей модернизации, так как туда можно установить новые процессоры (APU) A-серии.

Еще одним плюсом Athlon II X4 651 является более тонкий и современный технологический процесс, по которому он был произведен. Phenom II отвечает наличием Turbo-режима и кэша третьего уровня.

В итоге, ситуация складывается неоднозначная и здесь ключевым фактором может стать розничная цена, которая у процессора из линейки Athlon II на 20-25% меньше, чем у Phenom II. А с учетом более перспективной платформы (Socket FM1) покупка Athlon II X4 651 выглядит более привлекательной.

Конечно, что бы более однозначно говорить о преимуществах тех или иных моделей процессоров, необходимо знать на базе какой архитектуры они изготовлены, а так же их реальную производительность в различных приложениях, измеренную на практике. В следующем материале, мы рассмотрим подробно современные модельные ряды микропроцессоров Intel и AMD для настольных ПК, познакомимся с характеристиками различных семейств CPU, а так же приведем сравнительные результаты их производительности.